1 |
陈树越,晁亚,邹凌. 基于几何特征的孤立性肺结节检测[J]. 生物医学工程学杂志, 2016, 33(4):680-685.
|
|
CHEN S Y, CHAO Y, ZOU L. Detection of solitary pulmonary nodules based on geometric features[J]. Journal of Biomedical Engineering, 2016, 33(4): 680-685.
|
2 |
LITJENS G, KOOI T, EHTESHAMI BEJNORDI B, et al. A survey on deep learning in medical image analysis[J]. Medical Image Analysis, 2017, 42: 60-88. 10.1016/j.media.2017.07.005
|
3 |
MUNUSAMY H, KARTHIKEYAN J M, SHRIRAM G, et al. FractalCovNet architecture for COVID-19 Chest X-ray image Classification and CT-scan image Segmentation[J]. Biocybernetics and Biomedical Engineering, 2021, 41(3): 1025-1038. 10.1016/j.bbe.2021.06.011
|
4 |
RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]// Proceedings of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 9351. Cham: Springer, 2015: 234-241.
|
5 |
ZHAN X, ZHANG P, SONG F, et al. D2A U-Net: automatic segmentation of COVID-19 CT slices based on dual attention and hybrid dilated convolution[J]. Computers in Biology and Medicine, 2021, 135: No.104526. 10.1016/j.compbiomed.2021.104526
|
6 |
WANG B, JIN S, YAN Q, et al. AI-assisted CT imaging analysis for COVID-19 screening: building and deploying a medical AI system[J]. Applied Soft Computing, 2021, 98: No.106897. 10.1016/j.asoc.2020.106897
|
7 |
FAN D P, ZHOU T, JI G P, et al. Inf-Net: automatic COVID-19 lung infection segmentation from CT images[J]. IEEE Transactions on Medical Imaging, 2020, 39(8): 2626-2637. 10.1109/tmi.2020.2996645
|
8 |
KUMAR SINGH V, ABDEL-NASSER M, PANDEY N, et al. LungINFseg: segmenting COVID-19 infected regions in lung CT images based on a receptive-field-aware deep learning framework[J]. Diagnostics, 2021, 11(2): No.158. 10.3390/diagnostics11020158
|
9 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141. 10.1109/cvpr.2018.00745
|
10 |
FU J, LIU J, TIAN H, et al. Dual attention network for scene segmentation[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 3141-3149. 10.1109/cvpr.2019.00326
|
11 |
MILLETARI F, NAVAB N, AHMADI S A. V-Net: fully convolutional neural networks for volumetric medical image segmentation[C]// Proceedings of the 4th International Conference on 3D Vision. Piscataway: IEEE, 2016: 565-571. 10.1109/3dv.2016.79
|
12 |
BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495. 10.1109/tpami.2016.2644615
|
13 |
ALOM M Z, YAKOPCIC C, HASAN M, et al. Recurrent residual U-Net for medical image segmentation[J]. Journal of Medical Imaging, 2019, 6(1): No.014006. 10.1117/1.jmi.6.1.014006
|
14 |
OKTAY O, SCHLEMPER J, LE FOLGOC L, et al. Attention U-Net: learning where to look for the pancreas[EB/OL]. (2018-03-20) [2022-08-15]..
|
15 |
QIN X, ZHANG Z, HUANG C, et al. U2-Net: going deeper with nested U-structure for salient object detection[J]. Pattern Recognition, 2020, 106: No.107404. 10.1016/j.patcog.2020.107404
|
16 |
LOU A, GUAN S, KO H, et al. CaraNet: context axial reverse attention network for segmentation of small medical objects[C]// Proceedings of the SPIE 12032, Medical Imaging 2022: Image Processing. Bellingham, WA: SPIE, 2022: No.120320D. 10.1117/12.2611802
|
17 |
VALANARASU J M J, PATEL V M. UNeXt: MLP-based rapid medical image segmentation network[C]// Proceedings of the 2022 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 13435. Cham: Springer, 2022: 23-33.
|
18 |
ROY A G, NAVAB N, WACINGER C. Concurrent spatial and channel ‘squeeze & excitation’ in fully convolutional networks[C]// Proceedings of the 2018 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 11070. Cham: Springer, 2018: 421-429.
|
19 |
WANG Q, WU B, ZHU P, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020:11531-11539. 10.1109/cvpr42600.2020.01155
|
20 |
傅双杰,陈玮,尹钟. 结合自注意力和特征自适应融合的语义分割算法[J]. 信息与控制, 2022, 51(6):680-687, 698.
|
|
FU S J, CHEN W, YIN Z. Semantic segmentation algorithm combining self-attention and feature adaptive fusion[J]. Information and Control, 2022, 51(6):680-687, 698.
|
21 |
梁礼明,詹涛,雷坤,等. 多级自适应尺度的U型视网膜血管分割算法[J]. 电子测量技术, 2022, 45(13):130-140.
|
|
LIANG L M, ZHAN T, LEI K, et al. Multi-level adaptive scale U-shaped retinal blood vessel segmentation algorithm[J]. Electronic Measurement Technology, 2022, 45(13):130-140.
|
22 |
ZHOU Z, RAHMAN SIDDIQUEE M M, TAJBAKHSH N, et al. UNet++: a nested U-Net architecture for medical image segmentation[C]// Proceedings of the 2018 International Workshop on Deep Learning in Medical Image Analysis/ International Workshop on Multimodal Learning for Clinical Decision Support, LNCS 11045. Cham: Springer, 2018: 3-11. 10.1007/978-3-030-00889-5_1
|