1 |
FU Y, HOU Y, WANG Z, et al. Distributed scheduling problems in intelligent manufacturing systems[J]. Tsinghua Science and Technology, 2021, 26(5): 625-645. 10.26599/tst.2021.9010009
|
2 |
CHAOUCH I, DRISS O B, GHEDIRA K. A novel dynamic assignment rule for the distributed job shop scheduling problem using a hybrid ant-based algorithm[J]. Applied Intelligence, 2019, 49(5): 1903-1924. 10.1007/s10489-018-1343-7
|
3 |
XU D, NAGESHWARANIYER S S, SON Y J. A service-oriented simulation integration platform for hierarchical manufacturing planning and control[J]. International Journal of Production Research, 2016, 54(23): 7212-7230. 10.1080/00207543.2016.1221535
|
4 |
MOHAMMAD M, FORGHANI K. Designing cellular manufacturing systems considering S-shaped layout [J]. Computers and Industrial Engineering, 2016, 98: 221-236. 10.1016/j.cie.2016.05.041
|
5 |
ALHAWARI O I, SÜER G A, BHUTTA M K S. Operations performance considering demand coverage scenarios for individual products and products families in supply chains [J]. International Journal of Production Economics, 2021, 233: No.108012. 10.1016/j.ijpe.2020.108012
|
6 |
SARAÇOĞLU İ, SÜER G A, GANNON P. Minimizing makespan and flowtime in a parallel multi-stage cellular manufacturing company[J]. Robotics and Computer-Integrated Manufacturing, 2021, 72: No.102182. 10.1016/j.rcim.2021.102182
|
7 |
KAUR M, KADAM S. A novel Multi-Objective Bacteria Foraging Optimization Algorithm (MOBFOA) for multi-objective scheduling[J]. Applied Soft Computing, 2018, 66: 183-195. 10.1016/j.asoc.2018.02.011
|
8 |
YIN T, ZHANG Z, JIANG J. A Pareto-discrete hummingbird algorithm for partial sequence-dependent disassembly line balancing problem considering tool requirements[J]. Journal of Manufacturing Systems, 2021, 60: 406-428. 10.1016/j.jmsy.2021.07.005
|
9 |
AYYOUBZADEH B, EBRAHIMNEJAD S, BASHIRI M, et al. Modelling and an improved NSGA-Ⅱ algorithm for sustainable manufacturing systems with energy conservation under environmental uncertainties: a case study [J]. International Journal of Sustainable Engineering, 2021, 14(3): 255-279. 10.1080/19397038.2021.1923083
|
10 |
ZHANG W, HOU L, JIAO R J. Dynamic takt time decisions for paced assembly lines balancing and sequencing considering highly mixed-model production: an improved artificial bee colony optimization approach [J]. Computers and Industrial Engineering, 2021, 161: No.107616. 10.1016/j.cie.2021.107616
|
11 |
XUE B, ZHANG M, BROWNE W N. Particle swarm optimization for feature selection in classification: a multi-objective approach[J]. IEEE Transactions on Cybernetics, 2013, 43(6): 1656-1671. 10.1109/tsmcb.2012.2227469
|
12 |
FENG H, DA W, XI L, et al. Solving the integrated cell formation and worker assignment problem using particle swarm optimization and linear programming[J]. Computers and Industrial Engineering, 2017, 110: 126-137. 10.1016/j.cie.2017.05.038
|
13 |
ADINARAYANAN A, DINESH S, BALAJI D S, et al. Design of machine cell in cellular manufacturing systems using PSO approach[J]. Materials Today: Proceedings, 2021, 46(Pt 9): 3951-3955. 10.1016/j.matpr.2021.02.472
|
14 |
LIU C, WANG J, ZHOU M. Reconfiguration of virtual cellular manufacturing systems via improved imperialist competitive approach[J]. IEEE Transactions on Automation Science and Engineering, 2019, 16(3): 1301-1314. 10.1109/tase.2018.2878653
|
15 |
DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA‑Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197. 10.1109/4235.996017
|
16 |
季宁,张卫星,于洋洋,等.基于最优拉丁超立方抽样方法和NSGA‑Ⅱ算法的注射成型多目标优化[J]. 工程塑料应用, 2020, 48(3): 72-77.
|
|
JI N, ZHANG W X, YU Y Y, et al. Multi-objective optimization of injection molding based on optimal Latin hypercube sampling method and NSGA‑Ⅱ algorithm[J]. Engineering Plastics Application, 2020, 48(3): 72-77.
|
17 |
姜东,唐秋华,李梓响,等.多目标模拟退火算法求解混装线平衡与排序[J]. 机械设计与制造, 2018(9): 189-192. 10.3969/j.issn.1001-3997.2018.09.051
|
|
JIANG D, TANG Q H, LI Z X, et al. Multi-objective simulated annealing algorithm for balancing and sequencing of mixed-model assembly line [J]. Machinery Design & Manufacture, 2018(9): 189-192. 10.3969/j.issn.1001-3997.2018.09.051
|
18 |
LU C, GAO L, PAN Q, et al. A multi-objective cellular grey wolf optimizer for hybrid flowshop scheduling problem considering noise pollution [J]. Applied Soft Computing, 2019, 75: 728-749. 10.1016/j.asoc.2018.11.043
|
19 |
SHABANI-NAEENI F, GHASEMY YAGHIN R. Integrating data visibility decision in a multi-objective procurement transport planning under risk: a modified NSGA‑Ⅱ[J]. Applied Soft Computing, 2021, 107: No.107406. 10.1016/j.asoc.2021.107406
|