Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (2): 452-459.DOI: 10.11772/j.issn.1001-9081.2023020178
Special Issue: 数据科学与技术
• Data science and technology • Previous Articles Next Articles
Siyi ZHOU1, Tianrui LI1,2,3,4()
Received:
2023-02-27
Revised:
2023-04-06
Accepted:
2023-04-11
Online:
2024-02-22
Published:
2024-02-10
Contact:
Tianrui LI
About author:
ZHOU Siyi, born in 1998, M. S. candidate. Her research interests include data visualization.
Supported by:
通讯作者:
李天瑞
作者简介:
周思艺(1998—),女,四川内江人,硕士研究生,CCF会员,主要研究方向:数据可视化;
基金资助:
CLC Number:
Siyi ZHOU, Tianrui LI. Visual analysis of multivariate spatio-temporal data for origin-destination flow[J]. Journal of Computer Applications, 2024, 44(2): 452-459.
周思艺, 李天瑞. 面向源-目的地流的多元时空数据可视分析[J]. 《计算机应用》唯一官方网站, 2024, 44(2): 452-459.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023020178
数据源 | 描述 |
---|---|
IC卡数据 | IC(id,type,up_date,down_date,up_id,down_id) |
公交站点 | Bus(id,name,lng,lat) |
POI | POI(name,type,lng,lat) |
温度 | TEMP(id,name,lng,lat,value,date) |
相对湿度 | RH(id,name,lng.lat,value,date) |
降雨量 | Rain (id,name,lng,lat,value,date) |
SO2 | SO2(id,name,lng,lat,value,date) |
NO2 | NO2(id,name,lng,lat,value,date) |
PM2.5 | PM25(id,name,lng,lat,value,date) |
Tab. 1 Data description
数据源 | 描述 |
---|---|
IC卡数据 | IC(id,type,up_date,down_date,up_id,down_id) |
公交站点 | Bus(id,name,lng,lat) |
POI | POI(name,type,lng,lat) |
温度 | TEMP(id,name,lng,lat,value,date) |
相对湿度 | RH(id,name,lng.lat,value,date) |
降雨量 | Rain (id,name,lng,lat,value,date) |
SO2 | SO2(id,name,lng,lat,value,date) |
NO2 | NO2(id,name,lng,lat,value,date) |
PM2.5 | PM25(id,name,lng,lat,value,date) |
AQI( | SO2/(ppb·h-1) | NO2/(ppb·h-1) | PM2.5/(μg·m-3) |
---|---|---|---|
优(0~50) | 0~35 | 0~53 | 0.0~12.0 |
良(51~100) | 36~75 | 54~100 | 12.1~35.4 |
轻度污染(101~150) | 76~185 | 101~360 | 35.5~55.4 |
污染(151~200) | 186~304 | 361~649 | 55.5~150.4 |
严重污染(201~300) | 305~604 | 650~1 249 | 150.5~250.4 |
Tab. 2 AQI level judgment boundary values
AQI( | SO2/(ppb·h-1) | NO2/(ppb·h-1) | PM2.5/(μg·m-3) |
---|---|---|---|
优(0~50) | 0~35 | 0~53 | 0.0~12.0 |
良(51~100) | 36~75 | 54~100 | 12.1~35.4 |
轻度污染(101~150) | 76~185 | 101~360 | 35.5~55.4 |
污染(151~200) | 186~304 | 361~649 | 55.5~150.4 |
严重污染(201~300) | 305~604 | 650~1 249 | 150.5~250.4 |
方法 | 轮廓系数 |
---|---|
原始方法 | 0.913 |
只加空间平滑约束矩阵 A | 0.937 |
只加多元数据平滑约束矩阵 B | 0.936 |
本文方法 | 0.941 |
Tab. 3 Ablation experimental results
方法 | 轮廓系数 |
---|---|
原始方法 | 0.913 |
只加空间平滑约束矩阵 A | 0.937 |
只加多元数据平滑约束矩阵 B | 0.936 |
本文方法 | 0.941 |
分析任务 | 分析方法 | |||
---|---|---|---|---|
文献[ 方法 | 文献[ | 文献[ | 方法 本文 | |
群体移动 | √ | √ | √ | √ |
时空异常 | √ | × | √ | √ |
隐藏关系 | × | √ | √ | √ |
统计属性 | √ | √ | √ | √ |
多尺度时空分析 | √ | √ | √ | √ |
个体多元数据分析 | × | × | × | √ |
Tab. 4 Comparison results of system application
分析任务 | 分析方法 | |||
---|---|---|---|---|
文献[ 方法 | 文献[ | 文献[ | 方法 本文 | |
群体移动 | √ | √ | √ | √ |
时空异常 | √ | × | √ | √ |
隐藏关系 | × | √ | √ | √ |
统计属性 | √ | √ | √ | √ |
多尺度时空分析 | √ | √ | √ | √ |
个体多元数据分析 | × | × | × | √ |
1 | TAN Y, XU H, JIAO L, et al. A study of best practices in promoting sustainable urbanization in China[J]. Journal of Environmental Management, 2017, 193: 8-18. 10.1016/j.jenvman.2017.01.058 |
2 | 涂乐,陈彬捷,周志光. OD数据可视分析综述[J]. 计算机辅助设计与图形学学报, 2021, 33(8): 1160-1171. 10.3724/sp.j.1089.2021.18679 |
TU L, CHEN B J, ZHOU Z G. A survey on OD data visualization[J]. Journal of Computer-Aided Design & Computer Graphics, 2021, 33(8): 1160-1171. 10.3724/sp.j.1089.2021.18679 | |
3 | JIN Z, CAO N, SHI Y, et al. EcoLens: visual analysis of ecological regions in urban contexts using traffic data[J]. Journal of Visualization, 2021, 24(2): 349-364. 10.1007/s12650-020-00707-1 |
4 | NGUYEN N V T, HASS J, DANG T. TimeRadar: visualizing the dynamics of multivariate communities via timeline views[C]// Proceedings of the IEEE 45th Annual Computers, Software, and Applications Conference. Piscataway: IEEE, 2021: 350-356. 10.1109/compsac51774.2021.00057 |
5 | WANG Y, PENG T Q, LU H, et al. Seek for success: a visualization approach for understanding the dynamics of academic careers[J]. IEEE Transactions on Visualization and Computer Graphics, 2022, 28(1): 475-485. 10.1109/tvcg.2021.3114790 |
6 | LIU S, WU Y, WEI E, et al. StoryFlow: tracking the evolution of stories[J]. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(12): 2436-2445. 10.1109/tvcg.2013.196 |
7 | TANAHASHI Y, HSUEH C H, MA K L. An efficient framework for generating storyline visualizations from streaming data[J]. IEEE Transactions on Visualization and Computer Graphics, 2015, 21(6): 730-742. 10.1109/tvcg.2015.2392771 |
8 | ZHOU Z, YE Z, LIU Y, et al. Visual analytics for spatial clusters of air-quality data[J]. IEEE Computer Graphics and Applications, 2017, 37(5): 98-105. 10.1109/mcg.2017.3621228 |
9 | 杨欢欢,李天瑞,陈馨菂. 基于螺旋图的时间序列数据可视化[J]. 计算机应用, 2017, 37(9): 2443-2448. 10.11772/j.issn.1001-9081.2017.09.2443 |
YANG H H, LI T R, CHEN X D. Visualization of time series data based on spiral graph[J]. Journal of Computer Applications, 2017, 37(9): 2443-2448. 10.11772/j.issn.1001-9081.2017.09.2443 | |
10 | BOSTOCK M, OGIEVETSKY V, HEER J. D³ data-driven documents[J]. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(12): 2301-2309. 10.1109/tvcg.2011.185 |
11 | SATYANARAYAN A, RUSSELL R, HOFFSWELL J, et al. Reactive Vega: a streaming dataflow architecture for declarative interactive visualization[J]. IEEE Transactions on Visualization and Computer Graphics, 2016, 22(1): 659-668. 10.1109/tvcg.2015.2467091 |
12 | 赵韦鑫, 谭博友, 周锐, 等. 面向交通轨迹的数据流可视化方法[J]. 计算机辅助设计与图形学学报, 2022, 34(5): 768-776. 10.3724/sp.j.1089.2022.18967 |
ZHAO W X, TAN B Y, ZHOU R, et al. The visualization approach based on data flow for traffic trajectory[J] Journal of Computer-Aided Design & Computer Graphics, 2022, 34(5): 768-776. 10.3724/sp.j.1089.2022.18967 | |
13 | CHEN K, WANG Y, YU M, et al. ConfVisExplorer: a literature-based visual analysis system for conference comparison[J]. Journal of Visualization, 2021, 24(2): 381-395. 10.1007/s12650-020-00703-5 |
14 | PARK J H, NADEEM S, KAUFMAN A. GeoBrick: exploration of spatiotemporal data[J]. The Visual Computer, 2019, 35(2): 191-204. 10.1007/s00371-017-1461-y |
15 | CHEN S, YUAN X, WANG Z, et al. Interactive visual discovering of movement patterns from sparsely sampled geo-tagged social media data[J]. IEEE Transactions on Visualization and Computer Graphics, 2016, 22(1): 270-279. 10.1109/tvcg.2015.2467619 |
16 | CHEN S, LI S, CHEN S, et al. R-Map: a map metaphor for visualizing information reposting process in social media[J]. IEEE Transactions on Visualization and Computer Graphics, 2020, 26(1): 1204-1214. 10.1109/tvcg.2019.2934263 |
17 | LIVNAT Y, AGUTTER J, MOON S, et al. Visual correlation for situational awareness[C]// Proceedings of the 2005 IEEE Symposium on Information Visualization. Piscataway: IEEE, 2005: 95-102. |
18 | JIANG H, TANG K, ZHAO W, et al. Aureole: a multi-perspective visual analytics approach for green cellular networks[J]. Journal of Visualization, 2018, 21(3): 485-494. 10.1007/s12650-017-0467-x |
19 | ZHOU Z, MENG L, TANG C, et al. Visual abstraction of large scale geospatial origin-destination movement data[J]. IEEE Transactions on Visualization and Computer Graphics, 2019, 25(1): 43-53. 10.1109/tvcg.2018.2864503 |
20 | WU Y, XIE X, WANG J, et al. ForVizor: visualizing spatio-temporal team formations in soccer[J]. IEEE Transactions on Visualization and Computer Graphics, 2019, 25(1): 65-75. 10.1109/tvcg.2018.2865041 |
21 | LIU L, ZHANG H, LIU J, et al. Visual exploration of urban functional zones based on augmented nonnegative tensor factorization[J]. Journal of Visualization, 2021, 24(2): 331-347. 10.1007/s12650-020-00713-3 |
22 | DENG Z, WENG D, LIANG Y, et al. Visual cascade analytics of large-scale spatiotemporal data[J]. IEEE Transactions on Visualization and Computer Graphics, 2022, 28(6): 2486-2499. |
23 | BLAZEICZYK K, EPSTEIN Y, JENDRITZKY G, et al. Comparison of UTCI to selected thermal indices[J]. International Journal of Biometeorology, 2012, 56(3): 515-535. 10.1007/s00484-011-0453-2 |
24 | WANG D, LI T, DENG P, et al. A generalized deep learning clustering algorithm based on non-negative matrix factorization[J]. ACM Transactions on Knowledge Discovery from Data, 2023, 17(7): No.99. 10.1145/3584862 |
25 | HUANG R, LI Q, CHEN L, et al. A probability density-based visual analytics approach to forecast bias calibration[J]. IEEE Transactions on Visualization and Computer Graphics, 2022, 28(4): 1732-1744. 10.1109/tvcg.2020.3025072 |
26 | BASIRI S, KAPADIA M, SALAPAKA S. Orthogonal non-negative matrix factorization: a maximum-entropy-principle approach[EB/OL]. (2023-03-22) [2023-03-29].. 10.2139/ssrn.4397124 |
27 | CHOI S. Algorithms for orthogonal nonnegative matrix factorization[C]// Proceedings of the 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence). Piscataway: IEEE, 2008: 1828-1832. 10.1109/ijcnn.2008.4634046 |
28 | POMPILI F, GILLILS N, ABSIL P A, et al. Two algorithms for orthogonal nonnegative matrix factorization with application to clustering[J]. Neurocomputing, 2014, 141: 15-25. 10.1016/j.neucom.2014.02.018 |
29 | ASTERIS M, PAPAILIOPOULOS D, DIMAKIS A G. Orthogonal NMF through subspace exploration[C]// Proceedings of the 28th International Conference on Neural Information Processing Systems — Volume 1. Cambridge: MIT Press, 2015: 343-351. |
[1] | Guoxiang CHEN, Ziqiang YU, Haoyu ZHAO. Distributed k-nearest neighbor query algorithm for moving objects in dynamic road network [J]. Journal of Computer Applications, 2024, 44(11): 3403-3410. |
[2] | Xingheng TANG, Qiang GUO, Tianhui XU, Caiming ZHANG. Stock return prediction via multi-scale kernel adaptive filtering [J]. Journal of Computer Applications, 2023, 43(5): 1385-1393. |
[3] | Yimin SHAO, Fan ZHAO, Yi WANG, Baoquan WANG. Survey of visualization research based on blockchain technology and application [J]. Journal of Computer Applications, 2023, 43(10): 3038-3046. |
[4] | Yuhan GUO, Ning TIAN. Spatio-temporal heat prediction of online car‑hailing demand based on deep aggregated neural network [J]. Journal of Computer Applications, 2022, 42(12): 3941-3949. |
[5] | LIU Xiangyu, XIA Guoping, XIA Xiufeng, ZONG Chuanyu, ZHU Rui, LI Jiajia. Personalized privacy protection for spatio-temporal data [J]. Journal of Computer Applications, 2021, 41(3): 643-650. |
[6] | LIU Li, HU Haibo, YANG Tao. Visual analysis system for exploring spatio-temporal exhibition data [J]. Journal of Computer Applications, 2020, 40(9): 2719-2727. |
[7] | HUANG Weijian, LI Danyang, HUANG Yuan. Spatio-temporal hybrid prediction model for air quality [J]. Journal of Computer Applications, 2020, 40(11): 3385-3392. |
[8] | DING Jingquan, MA Bo, LI Xiao. Multi-view deep anomaly detection framework for vehicle refueling behaviors based on spatio-temporal data fusion [J]. Journal of Computer Applications, 2019, 39(11): 3370-3375. |
[9] | WANG Xuefei, DING Weilong. Short-term traffic prediction method on big data in highway domain [J]. Journal of Computer Applications, 2019, 39(1): 87-92. |
[10] | HOU Haiyao, QIAN Yurong, YING Changtian, ZHANG Han, LU Xueyuan, ZHAO Yi. Spatio-temporal query algorithm based on Hilbert-R tree hierarchical index [J]. Journal of Computer Applications, 2018, 38(10): 2869-2874. |
[11] | CHEN Yu, JIANG Wei, ZHOU Ji'en. Compression method for trajectory data based on prediction model [J]. Journal of Computer Applications, 2018, 38(1): 171-175. |
[12] | XU Xiaowei, DU Yi, ZHOU Yuanchun. Resident behavior model analysis method based on multi-source travel data [J]. Journal of Computer Applications, 2017, 37(8): 2362-2367. |
[13] | CUI Di, GUO Xiaoyan, CHEN Wei. Challenges and recent progress in big data visualization [J]. Journal of Computer Applications, 2017, 37(7): 2044-2049. |
[14] | Luo Jianping WU Qunyong ZHU Li. Object-oriented full-time domain moving object data model [J]. Journal of Computer Applications, 2013, 33(04): 1015-1017. |
[15] | WEI Duo LYU Guanghong. IP traffic matrix estimation based on ant colony optimization [J]. Journal of Computer Applications, 2013, 33(01): 92-94. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||