[1] AGRAWAL S, AGRAWAL J. Survey on anomaly detection using data mining techniques[J]. Procedia Computer Science, 2015, 60:708-713. [2] ABDALLAH A, MAAROF M A, ZAINAL A. Fraud detection system:a survey[J]. Journal of Network and Computer Applications, 2016, 68:90-113. [3] BUCZAK A L, GUVEN E. A survey of data mining and machine learning methods for cyber security intrusion detection[J]. IEEE Communications Surveys and Tutorials, 2016, 18(2):1153-1176. [4] NAIK N, DIAO R, SHEN Q. Dynamic fuzzy rule interpolation and its application to intrusion detection[J]. IEEE Transactions on Fuzzy Systems, 2018, 26(4):1878-1892. [5] DOSHI D A, KHEDKAR K B, RAUT N T, et al. Real time fault failure detection in power distribution line using power line communication[J]. International Journal of Engineering Science, 2016, 6(5):4834-4837. [6] 陶涛,周喜,马博,等. 基于双向LSTM的Seq2Seq模型在加油站时序数据异常检测中的应用[J]. 计算机应用, 2019, 39(3):924-929. (TAO T, ZHOU X, MA B, et al. Abnormal time series data detection of gas station by Seq2Seq model based on bidirectional long short-term memory[J]. Journal of Computer Applications, 2019, 39(3):924-929.) [7] YU W, CHENG W, AGGARWAL C C, et al. NetWalk:a flexible deep embedding approach for anomaly detection in dynamic networks[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM, 2018:2672-2681. [8] 陈万志,李东哲. 结合白名单过滤和神经网络的工业控制网络入侵检测方法[J]. 计算机应用, 2018, 38(2):363-369. (CHEN W Z, LI D Z. Intrusion detection method in industrial control network combining white list filtering and neural network[J]. Journal of Computer Applications, 2018, 38(2):363-369.) [9] FUJIMAKI R, YAIRI T, MACHIDA K. An approach to spacecraft anomaly detection problem using kernel feature space[C]//Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM, 2005:401-410. [10] ASHFAQ R A R, WANG X, HUANG J Z, et al. Fuzziness based semi-supervised learning approach for intrusion detection system[J]. Information Sciences, 2017, 378:484-497. [11] NOTO K, BRODLEY C, SLONIM D. FRaC:a feature-modeling approach for semi-supervised and unsupervised anomaly detection[J]. Data Mining and Knowledge Discovery, 2012, 25(1):109-133. [12] LENZERINI M. Data integration:a theoretical perspective[C]//Proceedings of the 21st ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems. New York:ACM, 2002:233-246. [13] DONG X L, SRIVASTAVA D. Big data integration[J]. Proceedings of the VLDB Endowment, 2013, 6(11):1188-1189. [14] MA B, JIANG T, ZHOU X, et al. A novel data integration framework based on unified concept model[J]. IEEE Access, 2017, 5:5713-5722. [15] ZHANG J, ZHENG Y, QI D. Deep spatio-temporal residual networks for citywide crowd flows prediction[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence. Pola Alto:AAAI Press, 2016:1655-1661. [16] CHENG W, SHEN Y, ZHU Y, et al. A neural attention model for urban air quality inference:learning the weights of monitoring stations[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Pola Alto:AAAI Press, 2018:2151-2158. [17] AGNIHOTRI M. Credit card fraud detection[DB/OL].[2017-04-17]. https://www.kaggle.com/mlg-ulb/creditcardfraud. [18] LAPTEV N, AMIZADEH S, FLINT I. Generic and scalable framework for automated time-series anomaly detection[C]//Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM, 2015:1939-1947. |