Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (3): 938-944.DOI: 10.11772/j.issn.1001-9081.2023030368
Special Issue: 多媒体计算与计算机仿真
• Multimedia computing and computer simulation • Previous Articles Next Articles
Zhanjun JIANG, Baijing WU(), Long MA, Jing LIAN
Received:
2023-04-07
Revised:
2023-05-22
Accepted:
2023-05-24
Online:
2023-06-15
Published:
2024-03-10
Contact:
Baijing WU
About author:
JIANG Zhanjun, born in 1975, Ph. D., professor. His research interests include digital image processing, key technologies for future mobile communication, wireless network planning and optimization.Supported by:
通讯作者:
吴佰靖
作者简介:
蒋占军(1975—),男,宁夏中卫人,教授,博士,主要研究方向:数字图像处理、未来移动通信关键技术、无线网络规划与优化基金资助:
CLC Number:
Zhanjun JIANG, Baijing WU, Long MA, Jing LIAN. Faster-RCNN water-floating garbage recognition based on multi-scale feature and polarized self-attention[J]. Journal of Computer Applications, 2024, 44(3): 938-944.
蒋占军, 吴佰靖, 马龙, 廉敬. 多尺度特征和极化自注意力的Faster-RCNN水漂垃圾识别[J]. 《计算机应用》唯一官方网站, 2024, 44(3): 938-944.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023030368
聚类中心 | 长/像素 | 宽/像素 | 长宽比 |
---|---|---|---|
1 | 19 | 20 | 1∶0.9 |
2 | 27 | 29 | 1∶0.9 |
3 | 30 | 52 | 1∶0.6 |
4 | 47 | 41 | 1∶1.2 |
5 | 45 | 76 | 1∶0.6 |
6 | 94 | 62 | 1∶1.5 |
7 | 64 | 110 | 1∶0.4 |
8 | 115 | 153 | 1∶0.8 |
9 | 147 | 360 | 1∶0.4 |
Tab. 1 Cluster centers and aspect ratio selections
聚类中心 | 长/像素 | 宽/像素 | 长宽比 |
---|---|---|---|
1 | 19 | 20 | 1∶0.9 |
2 | 27 | 29 | 1∶0.9 |
3 | 30 | 52 | 1∶0.6 |
4 | 47 | 41 | 1∶1.2 |
5 | 45 | 76 | 1∶0.6 |
6 | 94 | 62 | 1∶1.5 |
7 | 64 | 110 | 1∶0.4 |
8 | 115 | 153 | 1∶0.8 |
9 | 147 | 360 | 1∶0.4 |
序号 | 类别 | 举例 | 样本数 |
---|---|---|---|
1 | plastic | 塑料袋、塑料瓶、泡沫等 | 2 031 |
2 | paper | 牛奶盒、文件袋等 | 1 239 |
3 | glass | 玻璃罐、酒瓶等 | 568 |
4 | plant | 浮藻及水草、树叶等 | 970 |
5 | metal | 易拉罐、汽油桶等 | 653 |
6 | fabric/fiber | 绳子、布袋子、破衣服等 | 332 |
7 | wood | 木制品、树枝、木头等 | 519 |
8 | others | 无法辨识的材料等 | 566 |
Tab. 2 Water-floating garbage classification
序号 | 类别 | 举例 | 样本数 |
---|---|---|---|
1 | plastic | 塑料袋、塑料瓶、泡沫等 | 2 031 |
2 | paper | 牛奶盒、文件袋等 | 1 239 |
3 | glass | 玻璃罐、酒瓶等 | 568 |
4 | plant | 浮藻及水草、树叶等 | 970 |
5 | metal | 易拉罐、汽油桶等 | 653 |
6 | fabric/fiber | 绳子、布袋子、破衣服等 | 332 |
7 | wood | 木制品、树枝、木头等 | 519 |
8 | others | 无法辨识的材料等 | 566 |
相机参数 | 值 | RTK参数 | 值 |
---|---|---|---|
水平分辨率 | 180 dpi | 定位水平精度 | 0.25 m+1 ppmRMS |
垂直分辨率 | 180 dpi | 定位垂直精度 | 0.25 m+1 ppmRMS |
位深度 | 24 | 高程精度 | ±5 mm +1 ppm |
分辨率单位 | 2 | 动态测量精度 | ±8 mm+1 ppm |
颜色 | RGB | 星基增强系统差分定位 | 典型<5 m |
Tab. 3 Data collection device parameter settings
相机参数 | 值 | RTK参数 | 值 |
---|---|---|---|
水平分辨率 | 180 dpi | 定位水平精度 | 0.25 m+1 ppmRMS |
垂直分辨率 | 180 dpi | 定位垂直精度 | 0.25 m+1 ppmRMS |
位深度 | 24 | 高程精度 | ±5 mm +1 ppm |
分辨率单位 | 2 | 动态测量精度 | ±8 mm+1 ppm |
颜色 | RGB | 星基增强系统差分定位 | 典型<5 m |
模型 | mAP/% | Recall/% | 模型大小/MB |
---|---|---|---|
模型1 | 65.02 | 70.56 | 521 |
模型2 | 68.51 | 72.57 | 105 |
模型3 | 69.48 | 73.22 | 106 |
模型4 | 71.39 | 74.16 | 108 |
Tab. 4 Comparison of evaluating indicators among different improvement strategies
模型 | mAP/% | Recall/% | 模型大小/MB |
---|---|---|---|
模型1 | 65.02 | 70.56 | 521 |
模型2 | 68.51 | 72.57 | 105 |
模型3 | 69.48 | 73.22 | 106 |
模型4 | 71.39 | 74.16 | 108 |
类别 | 模型1 | 模型2 | 模型3 | 模型4 |
---|---|---|---|---|
plastic | 78.96 | 81.35 | 82.94 | 83.61 |
plant | 30.36 | 31.06 | 31.75 | 34.42 |
others | 54.78 | 57.82 | 59.12 | 62.56 |
metal | 64.20 | 69.30 | 70.37 | 73.02 |
fabric/fiber | 72.56 | 79.06 | 79.28 | 80.62 |
glass | 63.92 | 69.48 | 71.15 | 72.84 |
wood | 84.65 | 85.03 | 85.54 | 86.74 |
paper | 70.72 | 74.98 | 75.68 | 77.32 |
Tab. 5 Comparison of APs with different improvement strategies unit:%
类别 | 模型1 | 模型2 | 模型3 | 模型4 |
---|---|---|---|---|
plastic | 78.96 | 81.35 | 82.94 | 83.61 |
plant | 30.36 | 31.06 | 31.75 | 34.42 |
others | 54.78 | 57.82 | 59.12 | 62.56 |
metal | 64.20 | 69.30 | 70.37 | 73.02 |
fabric/fiber | 72.56 | 79.06 | 79.28 | 80.62 |
glass | 63.92 | 69.48 | 71.15 | 72.84 |
wood | 84.65 | 85.03 | 85.54 | 86.74 |
paper | 70.72 | 74.98 | 75.68 | 77.32 |
算法 | AP/% | mAP/% | 模型大小 /MB | Recall/% | 帧率/(frame·s-1) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
plastic | plant | others | paper | metal | fabric/fiber | glass | wood | |||||
Faster-RCNN[ | 78.96 | 30.36 | 54.78 | 70.72 | 64.20 | 72.56 | 63.92 | 84.65 | 65.02 | 521 | 70.56 | 27.5 |
YOLOv5s[ | 78.69 | 29.47 | 49.13 | 72.05 | 64.38 | 69.23 | 67.37 | 50.48 | 60.10 | 27 | 65.42 | 78.4 |
CenterNet[ | 81.70 | 30.40 | 53.80 | 65.64 | 69.19 | 78.10 | 76.23 | 52.72 | 63.47 | 125 | 66.31 | 60.9 |
SSD[ | 81.40 | 32.06 | 53.49 | 78.10 | 72.22 | 78.97 | 80.56 | 51.36 | 66.02 | 94 | 68.53 | 73.8 |
MP-Faster-RCNN | 83.61 | 34.42 | 62.56 | 77.32 | 73.02 | 80.62 | 72.84 | 86.74 | 71.39 | 108 | 74.16 | 20.1 |
Tab. 6 Evaluation result comparison of different algorithms
算法 | AP/% | mAP/% | 模型大小 /MB | Recall/% | 帧率/(frame·s-1) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
plastic | plant | others | paper | metal | fabric/fiber | glass | wood | |||||
Faster-RCNN[ | 78.96 | 30.36 | 54.78 | 70.72 | 64.20 | 72.56 | 63.92 | 84.65 | 65.02 | 521 | 70.56 | 27.5 |
YOLOv5s[ | 78.69 | 29.47 | 49.13 | 72.05 | 64.38 | 69.23 | 67.37 | 50.48 | 60.10 | 27 | 65.42 | 78.4 |
CenterNet[ | 81.70 | 30.40 | 53.80 | 65.64 | 69.19 | 78.10 | 76.23 | 52.72 | 63.47 | 125 | 66.31 | 60.9 |
SSD[ | 81.40 | 32.06 | 53.49 | 78.10 | 72.22 | 78.97 | 80.56 | 51.36 | 66.02 | 94 | 68.53 | 73.8 |
MP-Faster-RCNN | 83.61 | 34.42 | 62.56 | 77.32 | 73.02 | 80.62 | 72.84 | 86.74 | 71.39 | 108 | 74.16 | 20.1 |
1 | KONG S, TIAN M, QIU C, et al. IWSCR: an intelligent water surface cleaner robot for collecting floating garbage [J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(10): 6358-6368. 10.1109/tsmc.2019.2961687 |
2 | KHEKARE G S, DHANRE U T, DHANRE G T, et al. Design of optimized and innovative remotely operated machine for water surface garbage assortment [J]. International Journal of Computer Sciences and Engineering, 2019, 7(1): 113-117. 10.26438/ijcse/v7i1.113117 |
3 | LI N, HUANG H, WANG X, et al. Detection of floating garbage on water surface based on PC-Net [J]. Sustainability, 2022, 14(18): 11729. 10.3390/su141811729 |
4 | TOPOUZELIS K, PAPAGEORGIOU D, KARAGAITANAKIS A, et al. Remote sensing of sea surface artificial floating plastic targets with Sentinel-2 and unmanned aerial systems (Plastic Litter Project 2019) [J]. Remote Sensing, 2020, 12(12): 2013. 10.3390/rs12122013 |
5 | ARMITAGE S, AWTY-CARROLL K, CLEWLEY D, et al. Detection and classification of floating plastic litter using a vessel-mounted video camera and deep learning [J]. Remote Sensing, 2022, 14: 3425. 10.3390/rs14143425 |
6 | SUN X, LIU T, YU X, et al. Unmanned surface vessel visual object detection under all-weather conditions with optimized feature fusion network in YOLOv4 [J]. Journal of Intelligent & Robotic Systems, 2021, 103: 55. 10.1007/s10846-021-01499-8 |
7 | YI Z, YAO D, LI G, et al. Detection and localization for lake floating objects based on CA-faster R-CNN [J]. Multimedia Tools and Applications, 2022, 81(12): 17263-17281. 10.1007/s11042-022-12686-6 |
8 | LIN F, HOU T, JIN Q, et al. Improved YOLO based detection algorithm for floating debris in waterway [J]. Entropy, 2021, 23(9): 1111. 10.3390/e23091111 |
9 | CHEN Y, SONG B, WANG D, et al. An effective infrared small target detection method based on the human visual attention [J]. Infrared Physics & Technology, 2018, 95: 128-135. 10.1016/j.infrared.2018.10.033 |
10 | 贾可心,马正华,朱蓉,等.注意力机制改进轻量SSD模型的海面小目标检测[J]. 中国图象图形学报, 2022, 27(4): 1161-1175. 10.11834/jig.200517 |
JIA K X, MA Z H, ZHU R, et al. Attention-mechanism-based light single shot multiBox detector modelling improvement for small object detection on the sea surface [J]. Journal of Image and Graphics, 2022, 27(4): 1161-1175. 10.11834/jig.200517 | |
11 | 秦强强,廖俊国,周弋荀.基于多分支混合注意力的小目标检测算法[J].计算机应用, 2023, 43(11): 3579-3586. 10.11772/j.issn.1001-9081.2022111660 |
QIN Q Q, LIAO J G, ZHOU Y X. Small target detection algorithm based on multi branch mixed attention [J]. Journal of Computer Applications, 2023, 43(11): 3579-3586. 10.11772/j.issn.1001-9081.2022111660 | |
12 | YU J, LIN Y, ZHU Y, et al. Segmentation of river scenes based on water surface reflection mechanism [J]. Applied Sciences, 2020, 10(7): 2471. 10.3390/app10072471 |
13 | WENG Y, ZHOU T, LI Y, et al. NAS-Unet: neural architecture search for medical image segmentation [J]. IEEE Access, 2019, 7: 44247-44257. 10.1109/access.2019.2908991 |
14 | ZHANG H, ZU K, LU J, et al. EPSANet: an efficient pyramid squeeze attention block on convolutional neural network [C]// Proceedings of the 2022 Asian Conference on Computer Vision. Cham: Springer, 2022: 541-557. 10.1007/978-3-031-26313-2_33 |
15 | 杜达宽,孙剑峰,丁源雪,等.基于GM-APD激光雷达数据融合的小目标检测[J].光学精密工程,2023,31(3):393-403. 10.37188/ope.20233103.0393 |
DU D K, SUN J F, DING Y X, et al. Small object detection based on GM-APD lidar data fusion [J]. Optics and Precision Engineering, 2023,31 (3): 393-403. 10.37188/ope.20233103.0393 | |
16 | EVERINGHAM M, VAN GOOL L, WILLIAMS C K I, et al. The PASCAL Visual Object Classes (VOC) challenge [J]. International Journal of Computer Vision, 2009, 88: 303-338. 10.1007/s11263-009-0275-4 |
17 | DUAN K, BAI S, XIE L, et al. CenterNet: keypoint triplets for object detection [C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 6569-6578. 10.1109/iccv.2019.00667 |
18 | JOCHER G, STOKEN A, BOROVEC J, et al. ultralytics/yolov5: v4.0 - nn.SiLU() activations, Weights & Biases logging, PyTorch Hub integration [EB/OL]. [2023-01-15]. . |
19 | SONG Z, FU L, WU J, et al. Kiwifruit detection in field images using Faster R-CNN with VGG16 [J]. IFAC-PapersOnLine, 2019, 52(30): 76-81. 10.1016/j.ifacol.2019.12.500 |
20 | LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector [C]// Proceedings of the 2016 European Conference on Computer Vision. Cham: Springer, 2016: 21-37. 10.1007/978-3-319-46448-0_2 |
[1] | Zhangjian JI, Na DU. Tiny target detection based on improved VariFocalNet [J]. Journal of Computer Applications, 2024, 44(7): 2200-2207. |
[2] | Hongtian LI, Xinhao SHI, Weiguo PAN, Cheng XU, Bingxin XU, Jiazheng YUAN. Few-shot object detection via fusing multi-scale and attention mechanism [J]. Journal of Computer Applications, 2024, 44(5): 1437-1444. |
[3] | Tianhua CHEN, Jiaxuan ZHU, Jie YIN. Bird recognition algorithm based on attention mechanism [J]. Journal of Computer Applications, 2024, 44(4): 1114-1120. |
[4] | Yuliang ZHENG, Yunhua CHEN, Weijie BAI, Pinghua CHEN. Vehicle target detection by fusing event data and image frames [J]. Journal of Computer Applications, 2024, 44(3): 931-937. |
[5] | Cunyi LIAO, Yi ZHENG, Weijin LIU, Huan YU, Shouyin LIU. Decoupling-fusing algorithm for multiple tasks with autonomous driving environment perception [J]. Journal of Computer Applications, 2024, 44(2): 424-431. |
[6] | Yudong PANG, Zhixing LI, Weijie LIU, Tianhao LI, Ningning WANG. Small target detection model in overlooking scenes on tower cranes based on improved real-time detection Transformer [J]. Journal of Computer Applications, 2024, 44(12): 3922-3929. |
[7] | Lin WANG, Jingliang LIU, Wuwei WANG. Small target detection method in UAV images based on fusion of dilated convolution and Transformer [J]. Journal of Computer Applications, 2024, 44(11): 3595-3602. |
[8] | Dahai LI, Bingtao LI, Zhendong WANG. Underwater target detection algorithm based on improved YOLOv8 [J]. Journal of Computer Applications, 2024, 44(11): 3610-3616. |
[9] | Hao YANG, Yi ZHANG. Feature pyramid network algorithm based on context information and multi-scale fusion importance awareness [J]. Journal of Computer Applications, 2023, 43(9): 2727-2734. |
[10] | Meijia LIANG, Xinwu LIU, Xiaopeng HU. Small target detection algorithm for train operating environment image based on improved YOLOv3 [J]. Journal of Computer Applications, 2023, 43(8): 2611-2618. |
[11] | Shuai ZHENG, Xiaolong ZHANG, He DENG, Hongwei REN. 3D liver image segmentation method based on multi-scale feature fusion and grid attention mechanism [J]. Journal of Computer Applications, 2023, 43(7): 2303-2310. |
[12] | Haifeng LI, Fan ZHANG, Minnan PIAO, Huaichao WANG, Nansha LI, Zhongcheng GUI. Automatic detection of targets under airport pavement based on channel and spatial attention [J]. Journal of Computer Applications, 2023, 43(3): 930-935. |
[13] | Xin ZHAO, Qianqian ZHU, Cong ZHAO, Jialing WU. Segmentation of breast nodules in ultrasound images based on multi-scale and cross-spatial fusion [J]. Journal of Computer Applications, 2023, 43(11): 3599-3606. |
[14] | Zhiang ZHANG, Guangzhong LIAO. Multi-scale feature enhanced retinal vessel segmentation algorithm based on U-Net [J]. Journal of Computer Applications, 2023, 43(10): 3275-3281. |
[15] | LI Kewen, YANG Jiantao, HUANG Zongchao. Improved YOLOv3 target detection based on boundary limit point features [J]. Journal of Computer Applications, 2023, 43(1): 81-87. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||