Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (7): 2303-2310.DOI: 10.11772/j.issn.1001-9081.2022060803
Special Issue: 多媒体计算与计算机仿真
• Multimedia computing and computer simulation • Previous Articles Next Articles
Shuai ZHENG1,2,3, Xiaolong ZHANG1,2,3(), He DENG1,2,3, Hongwei REN4
Received:
2022-06-06
Revised:
2022-08-04
Accepted:
2022-08-11
Online:
2022-08-26
Published:
2023-07-10
Contact:
Xiaolong ZHANG
About author:
ZHENG Shuai, born in 1998, M. S. candidate. His research interests include computer vision, deep learning.Supported by:
郑帅1,2,3, 张晓龙1,2,3(), 邓鹤1,2,3, 任宏伟4
通讯作者:
张晓龙
作者简介:
郑帅(1998—),男,湖北孝感人,硕士研究生,主要研究方向:计算机视觉、深度学习;基金资助:
CLC Number:
Shuai ZHENG, Xiaolong ZHANG, He DENG, Hongwei REN. 3D liver image segmentation method based on multi-scale feature fusion and grid attention mechanism[J]. Journal of Computer Applications, 2023, 43(7): 2303-2310.
郑帅, 张晓龙, 邓鹤, 任宏伟. 基于多尺度特征融合和网格注意力机制的三维肝脏影像分割方法[J]. 《计算机应用》唯一官方网站, 2023, 43(7): 2303-2310.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022060803
方法 | VOE/% | RVD/% | ASD/mm | RMSD/mm | DSC |
---|---|---|---|---|---|
UNet [ | 14.21 ± 5.71 | 0.05 ± 0.10 | 4.33 ± 3.39 | 8.35 ± 7.54 | 0.923 ± 0.03 |
ResNet[ | 11.65 ± 4.06 | 0.03 ± 0.06 | 3.91 ± 3.95 | 8.11 ± 9.68 | 0.938 ± 0.02 |
Christ方法[ | 10.7 | 1.4 | 1.5 | 24.0 | 0.943 |
H-DenseUNet[ | 10.20 ± 3.44 | 0.01 ± 0.05 | 4.06 ± 3.85 | 9.63 ± 10.41 | 0.947 ± 0.01 |
Channel-Unet[ | 9.52 ± 4.65 | 0.02 ± 0.07 | 8.43 ± 9.39 | 14.21 ± 5.71 | 0.946 ± 0.03 |
U3-Net+DC[ | 6.14 | 1.98 | — | — | 0.964 |
本文方法 | 6.59 ± 1.97 | 0.01 ± 0.04 | 1.13 ± 0.34 | 2.68 ± 1.39 | 0.965 ± 0.01 |
Tab. 1 Comparison of liver segmentation results on 3DIRCADb dataset
方法 | VOE/% | RVD/% | ASD/mm | RMSD/mm | DSC |
---|---|---|---|---|---|
UNet [ | 14.21 ± 5.71 | 0.05 ± 0.10 | 4.33 ± 3.39 | 8.35 ± 7.54 | 0.923 ± 0.03 |
ResNet[ | 11.65 ± 4.06 | 0.03 ± 0.06 | 3.91 ± 3.95 | 8.11 ± 9.68 | 0.938 ± 0.02 |
Christ方法[ | 10.7 | 1.4 | 1.5 | 24.0 | 0.943 |
H-DenseUNet[ | 10.20 ± 3.44 | 0.01 ± 0.05 | 4.06 ± 3.85 | 9.63 ± 10.41 | 0.947 ± 0.01 |
Channel-Unet[ | 9.52 ± 4.65 | 0.02 ± 0.07 | 8.43 ± 9.39 | 14.21 ± 5.71 | 0.946 ± 0.03 |
U3-Net+DC[ | 6.14 | 1.98 | — | — | 0.964 |
本文方法 | 6.59 ± 1.97 | 0.01 ± 0.04 | 1.13 ± 0.34 | 2.68 ± 1.39 | 0.965 ± 0.01 |
方法 | 图片序列数 | VOE/% | RVD/% | ASD/mm | RMSD/mm | DSC |
---|---|---|---|---|---|---|
Lu方法[ | 78 | 5.90 | 2.70 | 0.91 | 1.88 | 0.969 |
Al-Shaikhli方法[ | 20 | 6.44 | 1.53 | 0.95 | 1.58 | 0.966 |
Dong方法[ | 38 | 6.44 | 0.01 | 0.98 | 1.87 | 0.966 |
Hu方法[ | 109 | 5.35 | -0.17 | 0.84 | 1.78 | 0.972 |
Lu方法[ | 40 | 5.92 | 1.03 | 1.06 | 1.68 | — |
Guo方法[ | 77 | — | — | 1.40 | 2.30 | 0.962 |
CANet[ | 111 | 5.89 | 0.01 | 1.00 | 2.57 | 0.970 |
本文方法 | 111 | 5.21 | 0.01 | 0.97 | 2.35 | 0.973 |
Tab. 2 Comparison of liver segmentation results on Sliver07 dataset
方法 | 图片序列数 | VOE/% | RVD/% | ASD/mm | RMSD/mm | DSC |
---|---|---|---|---|---|---|
Lu方法[ | 78 | 5.90 | 2.70 | 0.91 | 1.88 | 0.969 |
Al-Shaikhli方法[ | 20 | 6.44 | 1.53 | 0.95 | 1.58 | 0.966 |
Dong方法[ | 38 | 6.44 | 0.01 | 0.98 | 1.87 | 0.966 |
Hu方法[ | 109 | 5.35 | -0.17 | 0.84 | 1.78 | 0.972 |
Lu方法[ | 40 | 5.92 | 1.03 | 1.06 | 1.68 | — |
Guo方法[ | 77 | — | — | 1.40 | 2.30 | 0.962 |
CANet[ | 111 | 5.89 | 0.01 | 1.00 | 2.57 | 0.970 |
本文方法 | 111 | 5.21 | 0.01 | 0.97 | 2.35 | 0.973 |
方法 | VOE/% | RVD/% | ASD/mm | RMSD/mm | DSC |
---|---|---|---|---|---|
3D U-Net | 13.23±7.89 | 0.05±0.13 | 3.76±3.05 | 7.23±6.34 | 0.924±0.04 |
3D U-Net+MFF | 8.10±3.52 | 0.02±0.12 | 1.48±0.99 | 3.78±3.17 | 0.957±0.01 |
3D U-Net+GA+AGC | 8.73±5.13 | 0.01±0.08 | 1.91±2.18 | 4.70±4.96 | 0.953±0.03 |
本文方法 | 7.04±1.97 | 0.01±0.04 | 1.13±0.34 | 2.68±1.39 | 0.965±0.01 |
Tab. 3 Results of ablation experiment
方法 | VOE/% | RVD/% | ASD/mm | RMSD/mm | DSC |
---|---|---|---|---|---|
3D U-Net | 13.23±7.89 | 0.05±0.13 | 3.76±3.05 | 7.23±6.34 | 0.924±0.04 |
3D U-Net+MFF | 8.10±3.52 | 0.02±0.12 | 1.48±0.99 | 3.78±3.17 | 0.957±0.01 |
3D U-Net+GA+AGC | 8.73±5.13 | 0.01±0.08 | 1.91±2.18 | 4.70±4.96 | 0.953±0.03 |
本文方法 | 7.04±1.97 | 0.01±0.04 | 1.13±0.34 | 2.68±1.39 | 0.965±0.01 |
数据集 | 方法 | VOE/% | RVD/% | ASD/mm | RMSD/mm | DSC |
---|---|---|---|---|---|---|
某医院肝脏MRI数据集 | 3D U-Net | 8.96±3.46 | 0.03±0.08 | 0.97±0.38 | 2.40±0.67 | 0.952±0.01 |
3D U-Net+MFF | 6.66±2.68 | 0.01±0.06 | 0.67±0.27 | 1.92±0.68 | 0.965±0.01 | |
3D U-Net+GA+AGC | 6.40±2.39 | 0.01±0.05 | 0.65±0.16 | 1.95±0.60 | 0.966±0.01 | |
本文方法 | 6.17±2.08 | 0.01±0.02 | 0.64±0.20 | 1.90±0.60 | 0.968±0.01 | |
CT与MRI混合数据集 | 3D U-Net | 11.91±7.89 | 0.06±0.14 | 1.40±0.80 | 3.35±1.50 | 0.934±0.05 |
3D U-Net+MFF | 10.33±5.98 | 0.04±0.12 | 1.23±0.78 | 3.06±1.73 | 0.944±0.03 | |
3D U-Net+GA+AGC | 11.03±4.43 | 0.03±0.08 | 1.35±0.55 | 3.13±1.00 | 0.941±0.02 | |
本文方法 | 9.19±3.35 | 0.02±0.04 | 1.08±0.39 | 2.55±0.55 | 0.951±0.01 |
Tab. 4 Segmentation results of liver MRI dataset in a hospital and mixed dataset of CT and MRI
数据集 | 方法 | VOE/% | RVD/% | ASD/mm | RMSD/mm | DSC |
---|---|---|---|---|---|---|
某医院肝脏MRI数据集 | 3D U-Net | 8.96±3.46 | 0.03±0.08 | 0.97±0.38 | 2.40±0.67 | 0.952±0.01 |
3D U-Net+MFF | 6.66±2.68 | 0.01±0.06 | 0.67±0.27 | 1.92±0.68 | 0.965±0.01 | |
3D U-Net+GA+AGC | 6.40±2.39 | 0.01±0.05 | 0.65±0.16 | 1.95±0.60 | 0.966±0.01 | |
本文方法 | 6.17±2.08 | 0.01±0.02 | 0.64±0.20 | 1.90±0.60 | 0.968±0.01 | |
CT与MRI混合数据集 | 3D U-Net | 11.91±7.89 | 0.06±0.14 | 1.40±0.80 | 3.35±1.50 | 0.934±0.05 |
3D U-Net+MFF | 10.33±5.98 | 0.04±0.12 | 1.23±0.78 | 3.06±1.73 | 0.944±0.03 | |
3D U-Net+GA+AGC | 11.03±4.43 | 0.03±0.08 | 1.35±0.55 | 3.13±1.00 | 0.941±0.02 | |
本文方法 | 9.19±3.35 | 0.02±0.04 | 1.08±0.39 | 2.55±0.55 | 0.951±0.01 |
1 | MOGHBEL M, MASHOHOR S, MAHMUD R, et al. Review of liver segmentation and computer assisted detection/diagnosis methods in computed tomography[J]. Artificial Intelligence Review, 2018, 50(4): 497-537. 10.1007/s10462-017-9550-x |
2 | MASOUMI H, BEHRAD A, POURMINA M A, et al. Automatic liver segmentation in MRI images using an iterative watershed algorithm and artificial neural network[J]. Biomedical Signal Processing and Control, 2012, 7(5): 429-437. 10.1016/j.bspc.2012.01.002 |
3 | JIN Q G, MENG Z P, SUN C M, et al. RA-UNet: a hybrid deep attention-aware network to extract liver and tumor in CT scans[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: No.605132. 10.3389/fbioe.2020.605132 |
4 | 高琳,罗晓辉,何立新.水平集方法在CT肝脏图像分割中的应用[J].计算机工程与应用, 2005, 41(36): 201-202, 232. 10.3321/j.issn:1002-8331.2005.36.064 |
GAO L, LUO X H, HE L X. Application of level-set method in CT liver image segmentation[J]. Computer Engineering and Applications, 2005, 41(36): 201-202, 232. 10.3321/j.issn:1002-8331.2005.36.064 | |
5 | 郑睿,陈雷霆,房春兰,等.基于水平集方法的软组织图像序列分割[J].计算机工程与设计, 2007, 28(15): 3629-3631, 3726. 10.3969/j.issn.1000-7024.2007.15.028 |
ZHENG R, CHEN L T, FANG C L, et al. Soft tissue image sequences segmentation based on level set method[J]. Computer Engineering and Design, 2007, 28(15): 3629-3631, 3726. 10.3969/j.issn.1000-7024.2007.15.028 | |
6 | FU M, XU P, LI X D, et al. Fast crowd density estimation with convolutional neural networks[J]. Engineering Applications of Artificial Intelligence, 2015, 43: 81-88. 10.1016/j.engappai.2015.04.006 |
7 | LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation [C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 3431-3440. 10.1109/cvpr.2015.7298965 |
8 | RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation [C]// Proceedings of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 9351. Cham: Springer, 2015: 234-241. |
9 | ZHOU Z W, RAHMAN SIDDIQUEE M M, TAJBAKHSH N, et al. UNet++: a nested U-Net architecture for medical image segmentation [C]// Proceedings of the 2018 International Workshop on Deep Learning in Medical Image Analysis/ International Workshop on Multimodal Learning for Clinical Decision Support, LNCS 11045. Cham: Springer, 2018: 3-11. |
10 | FU J, LIU J, TIAN H J, et al. Dual attention network for scene segmentation [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 3141-3149. 10.1109/cvpr.2019.00326 |
11 | 刘哲,张晓林,宋余庆,等.结合改进的U-Net和Morphsnakes的肝脏分割[J].中国图象图形学报, 2018, 23(8): 1254-1262. |
LIU Z, ZHANG X L, SONG Y Q, et al. Liver segmentation with improved U-Net and Morphsnakes algorithm[J]. Journal of Image and Graphics, 2018, 23(8): 1254-1262. | |
12 | LI X M, CHEN H, QI X J, et al. H-DenseUNet: hybrid densely connected UNet for liver and tumor segmentation from CT volumes[J]. IEEE Transactions on Medical Imaging, 2018, 37(12): 2663-2674. 10.1109/tmi.2018.2845918 |
13 | CHEN Y L, WANG K, LIAO X Y, et al. Channel-UNet: a spatial channel-wise convolutional neural network for liver and tumors segmentation[J]. Frontiers in Genetics, 2019, 10: No.1110. 10.3389/fgene.2019.01110 |
14 | SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 2818-2826. 10.1109/cvpr.2016.308 |
15 | YAN Q S, WANG B, ZHANG W, et al. Attention-guided deep neural network with multi-scale feature fusion for liver vessel segmentation[J]. IEEE Journal of Biomedical and Health Informatics, 2021, 25(7): 2629-2642. 10.1109/jbhi.2020.3042069 |
16 | SALEHI S S M, ERDOGMUS D, GHOLIPOUR A. Tversky loss function for image segmentation using 3D fully convolutional deep networks [C]// Proceedings of the 2017 International Workshop on Machine Learning in Medical Imaging, LNCS 10541. Cham: Springer, 2017: 379-387. |
17 | CHLEBUS G, MEINE H, MOLTZ J H, et al. Neural network-based automatic liver tumor segmentation with random forest-based candidate filtering[EB/OL]. (2017-06-27) [2021-12-15]. . 10.1038/s41598-018-33860-7 |
18 | HAN X. Automatic liver lesion segmentation using a deep convolutional neural network method[EB/OL]. (2017-04-24) [2021-12-17]. . |
19 | CHRIST P F, ELSHAER M E A, ETTLINGER F, et al. Automatic liver and lesion segmentation in CT using cascaded fully convolutional neural networks and 3D conditional random fields [C]// Proceedings of the 2016 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 9901. Cham: Springer, 2016: 415-423. |
20 | TRAN S T, CHENG C H, LIU D G. A multiple layer U-Net, Un-Net, for liver and liver tumor segmentation in CT[J]. IEEE Access, 2021, 9: 3752-3764. 10.1109/access.2020.3047861 |
21 | LU F, WU F, HU P J, et al. Automatic 3D liver location and segmentation via convolutional neural network and graph cut[J]. International Journal of Computer Assisted Radiology and Surgery, 2017, 12(2): 171-182. 10.1007/s11548-016-1467-3 |
22 | AL-SHAIKHLI S D S, YANG M Y, ROSENHAHN B. Automatic 3D liver segmentation using sparse representation of global and local image information via level set formulation[EB/OL]. (2015-10-04) [2021-12-25]. . 10.1016/j.cmpb.2016.09.007 |
23 | DONG C H, CHEN Y W, FORUZAN A H, et al. Segmentation of liver and spleen based on computational anatomy models[J]. Computers in Biology and Medicine, 2015, 67: 146-160. 10.1016/j.compbiomed.2015.10.007 |
24 | HU P J, WU F, PENG J L, et al. Automatic 3D liver segmentation based on deep learning and globally optimized surface evolution[J]. Physics in Medicine and Biology, 2016, 61(24): No.8676. 10.1088/1361-6560/61/24/8676 |
25 | LU X S, XIE Q L, ZHA Y F, et al. Fully automatic liver segmentation combining multi-dimensional graph cut with shape information in 3D CT images[J]. Scientific Reports, 2018, 8: No.10700. 10.1038/s41598-018-28787-y |
26 | GUO X T, SCHWARTZ L H, ZHAO B S. Automatic liver segmentation by integrating fully convolutional networks into active contour models[J]. Medical Physics, 2019, 46(10): 4455-4469. 10.1002/mp.13735 |
27 | SHAO S, ZHANG X L, CHENG R Q, et al. Semantic segmentation method of 3D liver image based on contextual attention model [C]// Proceedings of the 2021 IEEE International Conference on Systems, Man, and Cybernetics. Piscataway: IEEE, 2021: 3042-3049. 10.1109/smc52423.2021.9659018 |
[1] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[2] | Xiyuan WANG, Zhancheng ZHANG, Shaokang XU, Baocheng ZHANG, Xiaoqing LUO, Fuyuan HU. Unsupervised cross-domain transfer network for 3D/2D registration in surgical navigation [J]. Journal of Computer Applications, 2024, 44(9): 2911-2918. |
[3] | Liting LI, Bei HUA, Ruozhou HE, Kuang XU. Multivariate time series prediction model based on decoupled attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2732-2738. |
[4] | Yexin PAN, Zhe YANG. Optimization model for small object detection based on multi-level feature bidirectional fusion [J]. Journal of Computer Applications, 2024, 44(9): 2871-2877. |
[5] | Zhiqiang ZHAO, Peihong MA, Xinhong HEI. Crowd counting method based on dual attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2886-2892. |
[6] | Shunyong LI, Shiyi LI, Rui XU, Xingwang ZHAO. Incomplete multi-view clustering algorithm based on self-attention fusion [J]. Journal of Computer Applications, 2024, 44(9): 2696-2703. |
[7] | Yunchuan HUANG, Yongquan JIANG, Juntao HUANG, Yan YANG. Molecular toxicity prediction based on meta graph isomorphism network [J]. Journal of Computer Applications, 2024, 44(9): 2964-2969. |
[8] | Kaipeng XUE, Tao XU, Chunjie LIAO. Multimodal sentiment analysis network with self-supervision and multi-layer cross attention [J]. Journal of Computer Applications, 2024, 44(8): 2387-2392. |
[9] | Pengqi GAO, Heming HUANG, Yonghong FAN. Fusion of coordinate and multi-head attention mechanisms for interactive speech emotion recognition [J]. Journal of Computer Applications, 2024, 44(8): 2400-2406. |
[10] | Yuhan LIU, Genlin JI, Hongping ZHANG. Video pedestrian anomaly detection method based on skeleton graph and mixed attention [J]. Journal of Computer Applications, 2024, 44(8): 2551-2557. |
[11] | Zhonghua LI, Yunqi BAI, Xuejin WANG, Leilei HUANG, Chujun LIN, Shiyu LIAO. Low illumination face detection based on image enhancement [J]. Journal of Computer Applications, 2024, 44(8): 2588-2594. |
[12] | Shangbin MO, Wenjun WANG, Ling DONG, Shengxiang GAO, Zhengtao YU. Single-channel speech enhancement based on multi-channel information aggregation and collaborative decoding [J]. Journal of Computer Applications, 2024, 44(8): 2611-2617. |
[13] | Yanjie GU, Yingjun ZHANG, Xiaoqian LIU, Wei ZHOU, Wei SUN. Traffic flow forecasting via spatial-temporal multi-graph fusion [J]. Journal of Computer Applications, 2024, 44(8): 2618-2625. |
[14] | Qianhong SHI, Yan YANG, Yongquan JIANG, Xiaocao OUYANG, Wubo FAN, Qiang CHEN, Tao JIANG, Yuan LI. Multi-granularity abrupt change fitting network for air quality prediction [J]. Journal of Computer Applications, 2024, 44(8): 2643-2650. |
[15] | Zheng WU, Zhiyou CHENG, Zhentian WANG, Chuanjian WANG, Sheng WANG, Hui XU. Deep learning-based classification of head movement amplitude during patient anaesthesia resuscitation [J]. Journal of Computer Applications, 2024, 44(7): 2258-2263. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||