Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (3): 989-994.DOI: 10.11772/j.issn.1001-9081.2023070929
Special Issue: 前沿与综合应用
• Frontier and comprehensive applications • Previous Articles
					
						                                                                                                                                                                                                                                                                                    Yidi LIU1, Zihao WEN2, Fuxiang REN1, Shiyin LI1, Deyu TANG1,3( )
)
												  
						
						
						
					
				
Received:2023-07-12
															
							
																	Revised:2023-09-19
															
							
																	Accepted:2023-09-20
															
							
							
																	Online:2023-10-26
															
							
																	Published:2024-03-10
															
							
						Contact:
								Deyu TANG   
													About author:LIU Yidi, born in 1999, M. S. candidate. Her research interests include drug discovery, machine learning.Supported by:
        
                   
            刘一迪1, 温自豪2, 任富香1, 李诗音1, 唐德玉1,3( )
)
                  
        
        
        
        
    
通讯作者:
					唐德玉
							作者简介:刘一迪(1999—),女,河南驻马店人,硕士研究生,主要研究方向:药物发现、机器学习基金资助:CLC Number:
Yidi LIU, Zihao WEN, Fuxiang REN, Shiyin LI, Deyu TANG. Self-adaptive spherical evolution for prediction of drug target interaction[J]. Journal of Computer Applications, 2024, 44(3): 989-994.
刘一迪, 温自豪, 任富香, 李诗音, 唐德玉. 自适应球形演化的药物-靶标相互作用预测方法[J]. 《计算机应用》唯一官方网站, 2024, 44(3): 989-994.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023070929
| 数据集 | 药物数 | 靶蛋白数 | DTI | 负样本 | P2N/% | 
|---|---|---|---|---|---|
| E | 445 | 664 | 2 926 | 292 554 | 1.00 | 
| GPCR | 223 | 95 | 635 | 20 550 | 3.03 | 
| IC | 210 | 204 | 1 476 | 41 364 | 3.57 | 
| NR | 54 | 26 | 90 | 1 314 | 6.67 | 
Tab. 1 Information of Yamanishi_08 gold standard dataset
| 数据集 | 药物数 | 靶蛋白数 | DTI | 负样本 | P2N/% | 
|---|---|---|---|---|---|
| E | 445 | 664 | 2 926 | 292 554 | 1.00 | 
| GPCR | 223 | 95 | 635 | 20 550 | 3.03 | 
| IC | 210 | 204 | 1 476 | 41 364 | 3.57 | 
| NR | 54 | 26 | 90 | 1 314 | 6.67 | 
| 指标 | 算法 | E | GPCR | IC | NR | 
|---|---|---|---|---|---|
| AUC | ASE-KELM | 0.999 | 0.998 | 0.999 | 0.993 | 
| NetLapRLS | 0.969 | 0.904 | 0.956 | 0.844 | |
| BLM-NII | 0.985 | 0.966 | 0.984 | 0.917 | |
| SELF-BLM | 0.860 | 0.894 | 0.925 | 0.773 | |
| SPLCMF | 0.970 | 0.942 | 0.981 | 0.828 | |
| WNN-GIP | 0.964 | 0.944 | 0.959 | 0.901 | |
| SEELM | 0.905 | 0.972 | 0.964 | 0.977 | |
| AUPR | ASE-KELM | 0.999 | 0.998 | 0.999 | 0.995 | 
| NetLapRLS | 0.786 | 0.617 | 0.820 | 0.463 | |
| BLM-NII | 0.869 | 0.709 | 0.909 | 0.701 | |
| SELF-BLM | 0.639 | 0.599 | 0.744 | 0.457 | |
| SPLCMF | 0.881 | 0.754 | 0.938 | 0.533 | |
| WNN-GIP | 0.706 | 0.520 | 0.717 | 0.589 | |
| SEELM | 0.910 | 0.981 | 0.970 | 0.983 | 
Tab. 2 Comparison of AUC and AUPR results among different algorithms
| 指标 | 算法 | E | GPCR | IC | NR | 
|---|---|---|---|---|---|
| AUC | ASE-KELM | 0.999 | 0.998 | 0.999 | 0.993 | 
| NetLapRLS | 0.969 | 0.904 | 0.956 | 0.844 | |
| BLM-NII | 0.985 | 0.966 | 0.984 | 0.917 | |
| SELF-BLM | 0.860 | 0.894 | 0.925 | 0.773 | |
| SPLCMF | 0.970 | 0.942 | 0.981 | 0.828 | |
| WNN-GIP | 0.964 | 0.944 | 0.959 | 0.901 | |
| SEELM | 0.905 | 0.972 | 0.964 | 0.977 | |
| AUPR | ASE-KELM | 0.999 | 0.998 | 0.999 | 0.995 | 
| NetLapRLS | 0.786 | 0.617 | 0.820 | 0.463 | |
| BLM-NII | 0.869 | 0.709 | 0.909 | 0.701 | |
| SELF-BLM | 0.639 | 0.599 | 0.744 | 0.457 | |
| SPLCMF | 0.881 | 0.754 | 0.938 | 0.533 | |
| WNN-GIP | 0.706 | 0.520 | 0.717 | 0.589 | |
| SEELM | 0.910 | 0.981 | 0.970 | 0.983 | 
| 药物编号 | 药物名称 | 靶标编号 | 靶标名称 | 
|---|---|---|---|
| D00348 | Isotretinoin/Absorica/Accutane/Sotret | hsa5916 | Retinoic Acid Receptor Gamma | 
| D00143 | Pregnenolone | hsa5241 | Progesterone Receptor | 
| D01689 | Loteprednol etabonate/Lotemax | hsa5241 | Progesterone Receptor | 
| D00443 | Spironolactone/Aldactone | hsa5241 | Progesterone Receptor | 
| D01217 | Dydrogesterone/Duphaston/Gynorest | hsa367 | Androgen Receptor | 
| D00951 | Medroxyprogesterone acetate/Depo-provera/Depo-subq provera 104/Provera | hsa367 | Androgen Receptor | 
| D00066 | Progesterone/Crinone/Prometrium | hsa367 | Androgen Receptor | 
Tab. 3 Prediction results of drug-target interactions by ASE-KELM in DrugBank
| 药物编号 | 药物名称 | 靶标编号 | 靶标名称 | 
|---|---|---|---|
| D00348 | Isotretinoin/Absorica/Accutane/Sotret | hsa5916 | Retinoic Acid Receptor Gamma | 
| D00143 | Pregnenolone | hsa5241 | Progesterone Receptor | 
| D01689 | Loteprednol etabonate/Lotemax | hsa5241 | Progesterone Receptor | 
| D00443 | Spironolactone/Aldactone | hsa5241 | Progesterone Receptor | 
| D01217 | Dydrogesterone/Duphaston/Gynorest | hsa367 | Androgen Receptor | 
| D00951 | Medroxyprogesterone acetate/Depo-provera/Depo-subq provera 104/Provera | hsa367 | Androgen Receptor | 
| D00066 | Progesterone/Crinone/Prometrium | hsa367 | Androgen Receptor | 
| 1 | DUDLEY J T, DESHPANDE T, BUTTE A J. Exploiting drug-disease relationships for computational drug repositioning [J]. Briefings in Bioinformatics, 2011, 12(4): 303-311. 10.1093/bib/bbr013 | 
| 2 | GANOTRA G K, WADE R C. Prediction of drug-target binding kinetics by comparative binding energy analysis [J]. ACS Medicinal Chemistry Letters, 2018, 9(11): 1134-1139. 10.1021/acsmedchemlett.8b00397 | 
| 3 | CHEN R, LIU X, JIN S, et al. Machine learning for drug-target interaction prediction [J]. Molecules, 2018, 23(9): 2208. 10.3390/molecules23092208 | 
| 4 | PESKA L, BUZA K, KOLLER J. Drug-target interaction prediction: a Bayesian ranking approach [J]. Computer Methods and Programs in Biomedicine, 2017, 152: 15-21. 10.1016/j.cmpb.2017.09.003 | 
| 5 | YAMANISHI Y, ARAKI M, GUTTERIDGE A, et al. Prediction of drug-target interaction networks from the integration of chemical and genomic spaces [J]. Bioinformatics, 2008, 24(13): i232-i240. 10.1093/bioinformatics/btn162 | 
| 6 | LÜ L, ZHOU T. Link prediction in complex networks: a survey [J]. Physica A: Statistical Mechanics and its Applications, 2011, 390(6): 1150-1170. 10.1016/j.physa.2010.11.027 | 
| 7 | 曾煜妮.面向药物-靶标相互作用预测的多特征学习方法[D].成都:四川大学,2021:83-86. | 
| ZENG Y N. Multi-feature learning approaches for drug-target interaction prediction [D]. Chengdu: Sichuan University, 2021: 83-86. | |
| 8 | LI Y, LIU X-Z, YOU Z-H, et al. A computational approach for predicting drug-target interactions from protein sequence and drug substructure fingerprint information [J]. International Journal of Intelligent Systems, 2021, 36(1): 593-609. 10.1002/int.22332 | 
| 9 | ZHANG R, DING Y. Identification of key features of CNS drugs based on SVM and greedy algorithm [J]. Current Computer-Aided Drug Design, 2020, 16(6): 725-733. 10.2174/1573409915666191212095340 | 
| 10 | 腾讯科技(深圳)有限公司,上海交通大学.药物与靶标的相互作用预测方法、装置、设备及存储介质: CN201910722794.5 [P]. 2019-11-05. | 
| Tencent Technology (Shenzhen) Company Limited, Shanghai Jiao Tong University. Drug-target interaction prediction methods, devices, and storage media: CN201910722794.5 [P]. 2019-11-05. | |
| 11 | SHARMA A, RANI R. BE-DTI': ensemble framework for drug target interaction prediction using dimensionality reduction and active learning [J]. Computer Methods and Programs in Biomedicine, 2018, 165: 151-162. 10.1016/j.cmpb.2018.08.011 | 
| 12 | SHANG Y, GAO L, ZOU Q, et al. Prediction of drug-target interactions based on multi-layer network representation learning [J]. Neurocomputing, 2021, 434: 80-89. 10.1016/j.neucom.2020.12.068 | 
| 13 | SHI H, LIU S, CHEN J, et al. Predicting drug-target interactions using Lasso with random forest based on evolutionary information and chemical structure [J]. Genomics, 2019, 111(6): 1839-1852. 10.1016/j.ygeno.2018.12.007 | 
| 14 | NIU Y Q. Supervised prediction of drug-target interactions by ensemble learning [J]. Journal of Chemical and Pharmaceutical Research, 2014, 6(7): 1991-1999. | 
| 15 | CHEN H, ZHANG Z. A semi-supervised method for drug-target interaction prediction with consistency in networks [J]. PLoS ONE, 2013, 8(5): e62975. 10.1371/journal.pone.0062975 | 
| 16 | MEI J-P, C-K KWOH, YANG P, et al. Drug-target interaction prediction by learning from local information and neighbors [J]. Bioinformatics, 2013, 29(2): 238-245. 10.1093/bioinformatics/bts670 | 
| 17 | VAN LAARHOVEN T, MARCHIORI E. Predicting drug-target interactions for new drug compounds using a weighted nearest neighbor profile [J]. PLoS ONE, 2013, 8(6): e66952. 10.1371/journal.pone.0066952 | 
| 18 | TANG D. Spherical evolution for solving continuous optimization problems [J]. Applied Soft Computing, 2019, 81: 105499. 10.1016/j.asoc.2019.105499 | 
| 19 | PIOTROWSKI A P. L-SHADE optimization algorithms with population-wide inertia [J]. Information Sciences, 2018, 468: 117-141. 10.1016/j.ins.2018.08.030 | 
| 20 | HUANG G-B, ZHU Q-Y, C-K SIEW. Extreme learning machine: a new learning scheme of feedforward neural networks [C]// Proceedings of the 2004 IEEE International Joint Conference on Neural Networks. Piscataway: IEEE, 2004, 2: 985-990. | 
| 21 | HUANG G-B, ZHOU H, DING X, et al. Extreme learning machine for regression and multiclass classification [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2012, 42(2): 513-529. 10.1109/tsmcb.2011.2168604 | 
| 22 | KANEHISA M, GOTO S, HATTORI M, et al. From genomics to chemical genomics: new developments in KEGG [J]. Nucleic Acids Research, 2006, 34(Database issue): D354-D357. 10.1093/nar/gkj102 | 
| 23 | SCHOMBURG I, CHANG A, EBELING C, et al. BRENDA, the enzyme database: updates and major new developments [J]. Nucleic Acids Research, 2004, 32(Database issue): D431-D433. 10.1093/nar/gkh081 | 
| 24 | GÜNTHER S, KUHN M, DUNKEL M, et al. SuperTarget and Matador: resources for exploring drug-target relationships [J]. Nucleic Acids Research, 2007, 36(Database issue): D919-D922. 10.1093/nar/gkm862 | 
| 25 | WISHART D S, KNOX C, GUO A C, et al. DrugBank: a knowledgebase for drugs, drug actions and drug targets [J]. Nucleic Acids Research, 2008, 36(Database issue): D901-D906. 10.1093/nar/gkm958 | 
| 26 | MOHAMED S K, NOVÁČEK V, NOUNU A. Discovering protein drug targets using knowledge graph embeddings [J]. Bioinformatics, 2020, 36(2): 603-610. 10.1093/bioinformatics/btz600 | 
| 27 | XIA Z, WU L-Y, ZHOU X, et al. Semi-supervised drug-protein interaction prediction from heterogeneous biological spaces [J]. BMC Systems Biology, 2010, 4(): S6. 10.1186/1752-0509-4-s2-s6 | 
| 28 | KEUM J, NAM H. SELF-BLM: prediction of drug-target interactions via self-training SVM [J]. PLoS ONE, 2017, 12(2): e0171839. 10.1371/journal.pone.0171839 | 
| 29 | XIA L-Y, YANG Z-Y, ZHANG H, et al. Improved prediction of drug-target interactions using self-paced learning with collaborative matrix factorization [J]. Journal of Chemical Information and Modeling, 2019, 59(7): 3340-3351. 10.1021/acs.jcim.9b00408 | 
| 30 | LIU S, AN J, ZHAO J, et al. Drug-target interaction prediction based on multisource information weighted fusion [J]. Contrast Media & Molecular Imaging, 2021, 2021: 6044256. 10.1155/2021/6044256 | 
| 31 | 胡苓芝,傅城州,蔡永铭,等.球形演化极限学习机在药物-靶标相互作用智能预测中的应用[J].华南师范大学学报(自然科学版),2023,55(1):121-128. 10.1186/s12859-023-05153-y | 
| HU L Z, FU C Z, CAI Y M, et al. Application of spherical evolution extreme learning machine in intelligent prediction of drug target interaction [J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(1): 121-128. 10.1186/s12859-023-05153-y | |
| 32 | LAYTON A. The use of isotretinoin in acne [J]. Dermato-Endocrinology, 2009, 1(3): 162-169. 10.4161/derm.1.3.9364 | 
| 33 | YE P, YAMASHITA T, POLLOCK D M, et al. Contrasting effects of eplerenone and spironolactone on adrenal cell steroidogenesis [J]. Hormone and Metabolic Research, 2009, 41(1): 35-39. 10.1055/s-0028-1087188 | 
| 34 | BENTEL J M, BIRRELL S N, PICKERING M A, et al. Androgen receptor agonist activity of the synthetic progestin, medroxyprogesterone acetate, in human breast cancer cells [J]. Molecular and Cellular Endocrinology, 1999, 154(1/2): 11-20. 10.1016/s0303-7207(99)00109-4 | 
| [1] | Zhen WANG, Shanshan ZHANG, Binyang WU, Wanhua SU. Optimization strategy of tandem composite turbine energy storage based on self-adaptive particle swarm optimization algorithm [J]. Journal of Computer Applications, 2024, 44(2): 611-618. | 
| [2] | Yao LIU, Ru LIU, Yu ZHAI. Self-adaptive Web crawler code generation method based on webpage source code structure comprehension [J]. Journal of Computer Applications, 2023, 43(6): 1779-1784. | 
| [3] | Fengting ZHANG, Juhua YANG, Jinhui REN, Kun JIN. Container throughput prediction based on optimal variational mode decomposition and kernel extreme learning machine [J]. Journal of Computer Applications, 2022, 42(8): 2333-2342. | 
| [4] | HOU Xiaohan, JIN Guodong, TAN Lining, XUE Yuanliang. Synthetic aperture radar ship detection method based on self-adaptive and optimal features [J]. Journal of Computer Applications, 2021, 41(7): 2150-2155. | 
| [5] | LIN Junchao, WAN Yuan. Self-adaptive multi-measure unsupervised feature selection method with structured graph optimization [J]. Journal of Computer Applications, 2021, 41(5): 1282-1289. | 
| [6] | GAO Huiyun, LU Huijuan, YAN Ke, YE Minchao. Selective ensemble algorithm for gene expression data based on diversity and accuracy of weighted harmonic average measure [J]. Journal of Computer Applications, 2018, 38(5): 1512-1516. | 
| [7] | HAN Deshuai, XING Jianchun, YANG Qiliang, LI Juelong. Modeling and verification approach for temporal properties of self-adaptive software dynamic processes [J]. Journal of Computer Applications, 2018, 38(3): 799-805. | 
| [8] | LI Longshu, WENG Qingqing. Self-adaptive differential evolution algorithm based on opposition-based learning [J]. Journal of Computer Applications, 2018, 38(2): 399-404. | 
| [9] | WANG Jing, WANG Chunmei, ZHI Jia, YANG Jiasen, CHEN Tuo. Multi-Agent-based real-time self-adaptive discrimination method [J]. Journal of Computer Applications, 2017, 37(7): 2034-2038. | 
| [10] | LIN Jinyong, DENG Dexiang, YAN Jia, LIN Xiaoying. Self-adaptive group based sparse representation for image inpainting [J]. Journal of Computer Applications, 2017, 37(4): 1169-1173. | 
| [11] | CHENG Biyun, LU Haiyan, HUANG Yang, XU Kaibo. Particle swarm optimization algorithm based on self-adaptive excellence coefficients for solving traveling salesman problem [J]. Journal of Computer Applications, 2017, 37(3): 750-754. | 
| [12] | HUANG Yonghang, TANG Yong, LI Chunying, TANG Zhikang, LIU Jiwei. Academic paper recommendation model based on community partition [J]. Journal of Computer Applications, 2016, 36(5): 1279-1283. | 
| [13] | WANG Peichong. Improved dynamic self-adaptive teaching-learning-based optimization algorithm [J]. Journal of Computer Applications, 2016, 36(3): 708-712. | 
| [14] | KUANG Guijuan, ZENG Guosun, XIONG Huanliang. Cloud resource re-allocation method focusing on user's evaluation feedback [J]. Journal of Computer Applications, 2015, 35(7): 1837-1842. | 
| [15] | LYU Jiaqing, LIU Licheng, HAO Luguo, ZHANG Wenzhong. Adaptive moving object extraction algorithm based on visual background extractor [J]. Journal of Computer Applications, 2015, 35(7): 2029-2032. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||