[1] CUI Z,LI Q,CAO Z,et al. Dense attention pyramid networks for multi-scale ship detection in SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing,2019,57(11):8983-8997. [2] PEI J, HUANG Y, HUO W, et al. SAR automatic target recognition based on multiview deep learning framework[J]. IEEE Transacions Geoscience and Remote Sensing,2018,56(4):2196-2210. [3] WANG Y,WANG C,ZHANG H,et al. Automatic ship detection based on RetinaNet using multi-resolution Gaofen-3 imagery[J]. Remote Sensing,2019,11(5):No. 531. [4] DENG Z,SUN H,ZHOU S,et al. Multi-scale object detection in remote sensing imagery with convolutional neural networks[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2018,145(Pt A):3-22. [5] LIU N,CAO Z,CUI Z,et al. Multi-scale proposal generation for ship detection in SAR images[J]. Remote Sensing,2019,11(5) No. 526. [6] 史文旭, 鲍佳慧, 姚宇. 基于深度学习的遥感图像目标检测与识别[J]. 计算机应用,2020,40(12):3558-3562.(SHI W X,BAO J H, YAO Y. Remote sensing image target detection and identification based on deep learning[J]. Journal of Computer Applications,2020,40(12):3558-3562.) [7] 许玥, 冯梦如, 皮家甜, 等. 基于深度学习模型的遥感图像分割方法[J]. 计算机应用,2019,39(10):2905-2914.(XU Y,FENG M R,PI J T,et al. Remote sensing image segmentation method based on deep learning model[J]. Journal of Computer Applications,2019,39(10):2905-2914.) [8] 熊咏平, 丁胜, 邓春华, 等. 基于深度学习的复杂气象条件下海上船只检测[J]. 计算机应用,2018,38(12):3631-3637. (XIONG Y P,DING S,DENG C H,et al. Ship detection under complex sea and weather conditions based on deep learning[J]. Journal of Computer Applications,2018,38(12):3631-3637.) [9] 边小勇, 费雄君, 穆楠. 基于尺度注意力网络的遥感图像场景分类[J]. 计算机应用,2020,40(3):872-877.(BIAN X Y,FEI X J,MU N. Remote sensing image scene classification based on scaleattention network[J]. Journal of Computer Applications,2020,40(3):872-877.) [10] KANG M, JI K, LENG X, et al. Contextual region-based convolutional neural network with multilayer fusion for SAR ship detection[J]. Remote Sensing,2017,9(8):No. 860. [11] GAO F,SHI W,WANG J,et al. Enhanced feature extraction for ship detection from multi-resolution and multi-scene Synthetic Aperture Radar(SAR) images[J]. Remote Sensing,2019,11(22):No. 2694. [12] LIN T Y,GOYAL P,GIRSHICK R,et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,42(2):318-327. [13] BELL S,ZITNICK C L,BALA K,et al. Inside-outside net:detecting objects in context with skip pooling and recurrent neural networks[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:2874-2883. [14] BODLA N,SINGH B,CHELLAPPA R,et al. Soft NMS-improving object detection with one line of code[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE,2017:5562-5570. [15] YU J,JIANG Y,WANG Z,et al. UnitBox:an advanced object detection network[C]//Proceedings of the 24th ACM International Conference on Multimedia. New York:ACM,2016:516-520. [16] 李健伟, 曲长文, 彭书娟, 等. 基于生成对抗网络和线上难例挖掘的SAR图像舰船目标检测[J]. 电子与信息学报,2019,41(1):143-149.(LI J W,QU C W,PENG S J,et al. Ship detection in SAR images based on generative adversarial network and online hard examples mining[J]. Journal of Electronics and Information Technology,2019,41(1):143-149.) [17] REN S,HE K,GIRSHICK R,et al. Faster R-CNN:towards realtime object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017, 39(6):1137-1149. [18] LIU W,ANGUELOV D,ERHAN D,et al. SSD:single shot multibox detector[C]//Proceedings of the 2016 European Conference on Computer Vision,LNCS 9905. Cham:Springer, 2016:21-37. |