Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (10): 2983-2994.DOI: 10.11772/j.issn.1001-9081.2023101374
• Artificial intelligence • Next Articles
Renke SUN(), Zhiyu HUANGFU, Hu CHEN, Zhongnian LI, Xinzheng XU
Received:
2023-10-13
Revised:
2024-01-17
Accepted:
2024-01-19
Online:
2024-10-15
Published:
2024-10-10
Contact:
Renke SUN
About author:
HUANGFU Zhiyu, born in 2000, M. S. candidate. His research interests include machine learning, medical image processing.Supported by:
通讯作者:
孙仁科
作者简介:
孙仁科(1976—),男,江苏徐州人,讲师,博士,CCF会员,主要研究方向:机器学习、计算机视觉、嵌入式系统 srk@cumt.edu.cn基金资助:
CLC Number:
Renke SUN, Zhiyu HUANGFU, Hu CHEN, Zhongnian LI, Xinzheng XU. Survey of neural architecture search[J]. Journal of Computer Applications, 2024, 44(10): 2983-2994.
孙仁科, 皇甫志宇, 陈虎, 李仲年, 许新征. 神经架构搜索综述[J]. 《计算机应用》唯一官方网站, 2024, 44(10): 2983-2994.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023101374
网络 | 操作类型 | 参数 | 参数设置 |
---|---|---|---|
CNN[ | 卷积操作 | 滤波器大小 | {64,128,256,512} |
卷积核大小 | {1,3,5} | ||
步幅 | {1} | ||
池化操作 | 池化层深度 | 小于12 | |
池化核大小 | {5,3,2} | ||
步幅 | {3,2} | ||
全连接操作 | 层深度 | 小于12 | |
层数 | 小于3 | ||
神经元大小 | {512,256,128} | ||
RNN方正汇总行[ | 循环神经网络操作 | 激活函数 | tanh、ReLU、 Identity、sigmoid |
Tab. 1 Basic calculation operators of NAS for CNN and RNN
网络 | 操作类型 | 参数 | 参数设置 |
---|---|---|---|
CNN[ | 卷积操作 | 滤波器大小 | {64,128,256,512} |
卷积核大小 | {1,3,5} | ||
步幅 | {1} | ||
池化操作 | 池化层深度 | 小于12 | |
池化核大小 | {5,3,2} | ||
步幅 | {3,2} | ||
全连接操作 | 层深度 | 小于12 | |
层数 | 小于3 | ||
神经元大小 | {512,256,128} | ||
RNN方正汇总行[ | 循环神经网络操作 | 激活函数 | tanh、ReLU、 Identity、sigmoid |
搜索方法类别 | 算法 | CIFAR-10 | ImageNet | |||||
---|---|---|---|---|---|---|---|---|
Top-1/% | GPUDays | GPUs | Top-5/% | Top-1/% | GPUDays | GPUs | ||
人工设计 | ResNet[ | 93.57 | — | — | 80.62 | 95.51 | — | — |
DenseNet[ | 96.54 | — | — | 78.54 | 94.46 | — | — | |
神经进化 | GeNet[ | 92.90 | 17 | — | 72.13 | 90.26 | 17 | — |
MNASNet[ | — | — | — | 76.70 | 93.30 | 4.5 | — | |
强化学习 | MetaQNN[ | 93.08 | 100 | 10 | — | — | — | — |
BlockQNN[ | 97.35 | 96 | 32 | 81.00 | 95.42 | 96 | 32(1080Ti) | |
文献[ | 96.35 | — | — | — | — | — | — | |
ENAS[ | 97.11 | 0.45 | 1 | — | — | — | — | |
梯度 | DARTS[ | 97.23 | 4 | 4(1080Ti) | 73.30 | 81.30 | 4 | — |
P-DARTS[ | 97.75 | 0.3 | — | 75.60 | 92.60 | 0.3 | — | |
sharpDARTS[ | 98.07 | 0.8 | 1(2080Ti) | 74.90 | 92.20 | 0.8 | — | |
PC-DARTS[ | 97.43 | 0.1 | 4(1080Ti) | 75.80 | 92.70 | 3.8 | 8(V100) | |
随机搜索 | Random Search[ | 96.09 | 8 | — | — | — | — | — |
贝叶斯优化 | Bergstra[ | 95.00 | — | — | — | — | — | — |
ProxyBO[ | 97.12 | 0.7 | — | — | — | — | — |
Tab. 2 Performance and efficiency of different NAS algorithms on CIFAR-10 and ImageNet datasets
搜索方法类别 | 算法 | CIFAR-10 | ImageNet | |||||
---|---|---|---|---|---|---|---|---|
Top-1/% | GPUDays | GPUs | Top-5/% | Top-1/% | GPUDays | GPUs | ||
人工设计 | ResNet[ | 93.57 | — | — | 80.62 | 95.51 | — | — |
DenseNet[ | 96.54 | — | — | 78.54 | 94.46 | — | — | |
神经进化 | GeNet[ | 92.90 | 17 | — | 72.13 | 90.26 | 17 | — |
MNASNet[ | — | — | — | 76.70 | 93.30 | 4.5 | — | |
强化学习 | MetaQNN[ | 93.08 | 100 | 10 | — | — | — | — |
BlockQNN[ | 97.35 | 96 | 32 | 81.00 | 95.42 | 96 | 32(1080Ti) | |
文献[ | 96.35 | — | — | — | — | — | — | |
ENAS[ | 97.11 | 0.45 | 1 | — | — | — | — | |
梯度 | DARTS[ | 97.23 | 4 | 4(1080Ti) | 73.30 | 81.30 | 4 | — |
P-DARTS[ | 97.75 | 0.3 | — | 75.60 | 92.60 | 0.3 | — | |
sharpDARTS[ | 98.07 | 0.8 | 1(2080Ti) | 74.90 | 92.20 | 0.8 | — | |
PC-DARTS[ | 97.43 | 0.1 | 4(1080Ti) | 75.80 | 92.70 | 3.8 | 8(V100) | |
随机搜索 | Random Search[ | 96.09 | 8 | — | — | — | — | — |
贝叶斯优化 | Bergstra[ | 95.00 | — | — | — | — | — | — |
ProxyBO[ | 97.12 | 0.7 | — | — | — | — | — |
1 | LIU Y, CHEN L, LI C, et al. Long-term and short-term memory networks based on forgetting memristors [J]. Soft Computing, 2023, 27(23): 18403-18418. |
2 | 冯洋,邵晨泽.神经机器翻译前沿综述[J].中文信息学 报,2020,34(7):1-18. |
FENG Y, SHAO C Z. Frontiers in neural machine translation: a literature review[J]. Journal of Chinese Information Processing, 2020, 34(7):1-18. | |
3 | 李亚超,熊德意,张民. 神经机器翻译综述[J]. 计算机学报,2018,41(12):2734-2755. |
LI Y C, XIONG D Y, ZHANG M. A survey of neural machine translation[J]. Chinese Journal of Computers, 2018, 41(12):2734-2755. | |
4 | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2014-09-04)[2023-10-01]. . |
5 | HOWARD A G, ZHU M, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications [EB/OL]. (2017-04-17)[2023-10-01]. . |
6 | KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]// Proceedings of the 25th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates, 2012: 1097-1105. |
7 | REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]// Proceedings of the 28th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2015: 91-99. |
8 | LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]// Proceedings of the 14th European Conference on Computer Vision. Cham: Springer, 2016: 21-37. |
9 | LIN T-Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2999-3007. |
10 | LeCUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition [J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. |
11 | SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015:1-9. |
12 | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. |
13 | HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 2261-2269. |
14 | ZHANG X, ZHOU X, LIN M, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 6848-6856. |
15 | HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141. |
16 | CHENG X, ZHONG Y, HARANDI M, et al. Hierarchical neural architecture search for deep stereo matching[C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates, 2020: 22158-22169. |
17 | ZHANG M, LI H, PAN S, et al. One-shot neural architecture search: maximising diversity to overcome catastrophic forgetting[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(9): 2921-2935. |
18 | ZOPH B, LE Q V. Neural architecture search with reinforcement learning[EB/OL]. (2017-02-15)[2023-10-01]. . |
19 | BAKER B, GUPTA O, NAIK N, et al. Designing neural network architectures using reinforcement learning [EB/OL]. (2017-11-07)[2023-10-01]. . |
20 | REAL E, MOORE S, SELLE A, et al. Large-scale evolution of image classifiers[C]// Proceedings of the 34th International Conference on Machine Learning. New York: ACM, 2017: 2902-2911. |
21 | SHU Y, WANG. W, CAI S. Understanding architectures learnt by cell-based neural architecture search [EB/OL].(2019-09-20)[2023-10-01]. . |
22 | PHAM H, GUAN M Y, ZOPH B, et al. Efficient neural architecture search via parameter sharing [EB/OL]. (2018-02-09)[2023-10-01]. . |
23 | BAKER B, GUPTA O, RASKAR R, et al. Accelerating neural architecture search using performance prediction[EB/OL]. (2017-05-30) [2023-10-01]. . |
24 | BASHIVAN P, TENSEN M, DICARLO J. Teacher guided architecture search[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019:5319-5328. |
25 | ZHENG X, JI R, TANG L, et al. Multinomial distribution learning for effective neural architecture search[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 1304-1313. |
26 | MEI J R, LI Y W, JIN X J, et al. AtomNAS: fine-grained end-to-end neural architecture search [EB/OL]. (2020-02-23)[2023-10-01]. . |
27 | GUO Z, ZHANG X, MU H, et al. Single path One-shot neural architecture search with uniform sampling[EB/OL]. (2020-07-08)[2023-10-01]. . |
28 | CHEN Y, YANG T, ZHANG X, et al. DetNAS: neural architecture search on object detection[EB/OL]. (2019-10-30)[2023-10-01]. . |
29 | GHIASI G, LIN T-Y, LE Q V. NAS-FPN: learning scalable feature pyramid architecture for object detection[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 7029-7038. |
30 | PENG J, SUN M, ZHANG Z, et al. Efficient neural architecture transformation search in channel level for object detection[EB/OL]. (2019-09-05)[2023-10-01]. . |
31 | LIANG F, LIN C, GUO R, et al. Computation reallocation for object detection[EB/OL].(2019-02-24)[2023-10-01]. . |
32 | DING S, CHEN T, GONG X, et al. AutoSpeech: neural architecture search for speaker recognition[EB/OL]. (2020-05-07) [2023-10-01]. . |
33 | LIU C, CHEN L-C, SCHROFF F, et al. Auto-DeepLab: hierarchical neural architecture search for semantic image segmentation[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE,2019: 82-92. |
34 | ZHANG Y, QIU Z, LIU J, et al. Customizable architecture search for semantic segmentation[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 11633-11642. |
35 | NEKRASOV V, CHEN H, SHEN C, et al. Fast neural architecture search of compact semantic segmentation models via auxiliary cells[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 9118-9127. |
36 | LU Z, WHALEN I, BODDETI V, et al. NSGA-Net: s multi-objective genetic algorithm for neural architecture search[EB/OL].(2019-04-18) [2023-10-01]. . |
37 | ELSKEN T, METZEN J H, HUTTER F. Efficient multi-objective neural architecture search via Lamarckian evolution[EB/OL]. (2018-04-24)[2023-10-01]. . |
38 | XIONG Y, MEHTA R, SINGH V. Resource constrained neural network architecture search: will a submodularity assumption help?[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 1901-1910. |
39 | LI W, WEN S, SHI K B, et al. Neural architecture search with a lightweight Transformer for text-to-image synthesis[J]. IEEE Transactions on Network Science and Engineering, 2022, 9(3): 1567-1576. |
40 | XIE B, CHANG H, ZHANG Z, et al. Adversarially robust neural architecture search for graph neural networks[C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 8143-8152. |
41 | CHENG A, WANG J, ZHANG X S, et al. DPNAS: neural architecture search for deep learning with differential privacy[C]// Proceedings of the 36th International Joint Conference on Artificial Intelligence. Menlo Park: AAAI Press, 2022: 6358-6366. |
42 | LIU C, LENG Z, SUN P, et al. LidarNAS: unifying and searching neural architectures for 3D point clouds[C]// Proceedings of the 17th European Conference on Computer Vision. Cham:Springer, 2022: 158-175. |
43 | FALANTI A, LOMURNO E, ARDAGNA D, et al. POPNASv3: a Pareto-optimal neural architecture search solution for image and time series classification[J]. Applied Soft Computing, 2023, 145: 110555. |
44 | KAIROUZ P, McMAHAN B, AVENT B, et al. Advances and open problems in federated learning[EB/OL]. (2019-10-10) [2023-10-01]. . |
45 | ZHU H, JIN Y. Multi-objective evolutionary federated learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(4): 1310-1322. |
46 | XU M, ZHAO Y, BIAN K, et al. Federated neural architecture search[EB/OL]. (2022-02-15)[2023-10-01]. . |
47 | LIU S, ZHANG H, JIN Y. A survey on computationally efficient neural architecture search[J]. Journal of Automation and Intelligence, 2022, 1(1):100002. |
48 | ZOPH B, VASUDEVAN V, SHLENS J, et al. Learning transferable architectures for scalable image recognition[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 8697-8710. |
49 | CAI H, YANG J, ZHANG W, et al. Path-level network transformation for efficient architecture search[C]// Proceedings of the 35th International Conference on Machine Learning. New York: JMLR.org, 2018: 677-686. |
50 | RAWAL A, MIIKKULAINEN R. From nodes to networks: evolving recurrent neural networks [EB/OL].(2018-07-07)[2023-10-01]. . |
51 | LIU H, SIMONYAN K, YANG Y. DARTS: differentiable architecture search [EB/OL]. (2019-04-23)[2023-10-01]. . |
52 | HUANG H, SHEN L, HE C, et al. Differentiable neural architecture search for extremely lightweight image super-resolution[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(6): 2672-2682. |
53 | TAN M, CHEN B, PANG R, et al. MNASNet: platform-aware neural architecture search for mobile[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 2815-2823. |
54 | LI L, TALWALKAR A. Random search and reproducibility for neural architecture search [EB/OL]. (2019-02-20)[2023-10-01]. . |
55 | BERGSTRA J, BENGIO Y. Random search for hyper-parameter optimization[J]. Journal of Machine Learning Research, 2012,13: 281-305. |
56 | BERGSTRA J, YAMINS D,COX D. Making a science of model search: hyperparameter optimization in hundreds of dimensions for vision architectures[C]// Proceedings of the 30th International Conference on Machine Learning. New York: JMLR.org, 2013: 115-123. |
57 | YANG J, LIU Y, XU H. HOTNAS: hierarchical optimal transport for neural architecture search[C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 11990-12000. |
58 | SHEN Y, LI Y, ZHENG J, et al. ProxyBO: accelerating neural architecture search via Bayesian optimization with zero-cost proxies[C]// Proceedings of the 37th AAAI Conference on Artificial Intelligence. Menlo Park: AAAI Press, 2023: 9792-9801. |
59 | ZHONG Z, YAN J, WU W, et al. Practical block-wise neural network architecture generation[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 2423-2432. |
60 | CAI H, CHEN T, ZHANG W, et al. Efficient architecture search by network transformation [EB/OL]. (2017-11-21)[2023-10-01]. . |
61 | TAN M, LE Q V. EfficientNet: rethinking model scaling for convolutional neural networks [C]// Proceedings of the 2019 International Conference on Machine Learning. New York: JMLR.org, 2019: 6105-6114. |
62 | SUGANUMA M, SHIRAKAWA S, NAGAO T. A genetic programming approach to designing convolutional neural network architectures[EB/OL]. (2017-08-17)[2023-10-01]. . |
63 | XIE L, YUILLE A. Genetic CNN [C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 1388-1397. |
64 | CHEN T, GOODFELLOW I, SHLENS J. Net2Net: accelerating learning via knowledge transfer [EB/OL]. (2015-11-18)[2023-10-01]. . |
65 | LIU H, SIMONYAN K, VINYALS O, et al. Hierarchical representations for efficient architecture search[EB/OL]. [2023-10-01]. . |
66 | CUBUK E D, ZOPH B, SCHOENHOLZ S S, et al. Intriguing properties of adversarial examples[EB/OL]. [2023-10-01]. . |
67 | LAWTON N, KUMAR A, THATTAI G, et al. Neural architecture search for parameter-efficient fine-tuning of large pre-trained language models [EB/OL]. (2023-05-26)[2023-10-01]. . |
68 | REAL E, AGGARWAL A, HUANG Y P, et al. Regularized evolution for image classifier architecture search [EB/OL]. (2019-02-16)[2023-10-01]. . |
69 | ELSKEN T, METZEN J H, HUTTER F. Simple and efficient architecture search for convolutional neural networks[EB/OL]. [2023-10-01]. . |
70 | LI X, ZHOU Y, PAN Z, et al. Partial order pruning: for best speed/accuracy trade-off in neural architecture search [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 9137-9145. |
71 | WISTUBA M. Deep learning architecture search by neuro-cell-based evolution with function-preserving mutations[C]// Proceedings of the 2018 Joint European Conference on Machine Learning and Knowledge Discovery in Database. Cham:Springer, 2018:243-258. |
72 | CHU X, ZHANG B, XU R, et al. Multi-objective reinforce devolution in mobile neural architecture search [EB/OL]. (2019-01-16)[2023-10-01]. . |
73 | CAI H, ZHU L, HAN S. ProxylessNAS: direct neural architecture search on target task and hardware[EB/OL]. (2019-02-23)[2023-10-01]. . |
74 | XU Y, XIE L, ZHANG X, et al. PC-DARTS: partial channel connections for memory-efficient differentiable architecture search [EB/OL].(2020-04-07)[2023-10-01]. . |
75 | CHEN X, XIE L, WU J, et al. Progressive differentiable architecture search: bridging the depth gap between search and evaluation [C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 1294-1303. |
76 | HUNDT A, JAIN V, HAGER G. sharpDARTS: faster and more accurate differentiable architecture search [EB/OL].(2019-03-23)[2023-10-01]. . |
77 | XUE Y, QIN J. Partial connection based on channel attention for differentiable neural architecture search[J]. IEEE Transactions on Industrial Informatics, 2023,19(5):6804-6813. |
78 | XIAO H, WANG Z, ZHU Z, et al. Shapley-NAS: discovering operation contribution for neural architecture search[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 11882-11891. |
79 | CHRABASZCZ P, LOSHCHILOV I, HUTTER F. A downsampled variant of ImageNet as an alternative to the CIFAR datasets [EB/OL]. (2017-07-27)] [2023-10-01]. . |
80 | SNOEK J, RIPPEL O, SWERSKY K, et al. Scalable Bayesian optimization using deep neural networks[C]// Proceedings of the 32nd International Conference on Machine Learning. New York: JMLR.org, 2015: 2171-2180. |
81 | KLEIN A, FALKNER S, SPRINGENBERG J T, et al. Learning curve prediction with Bayesian neural networks [EB/OL]. (2016-11-04)[2023-10-01]. . |
82 | DOMHAN T, SPRINGENBERG J T, HUTTER F. Speeding up automatic hyperparameter optimization of deep neural networks by extrapolation of learning curves[C]// Proceedings of the Twenty-Fourth International Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2015:3460-3468. |
83 | MILLS K G, HAN F X, ZHANG J, et al. GENNAPE: towards generalized neural architecture performance estimators[C]// Proceedings of the 37th AAAI Conference on Artificial Intelligence. Menlo Park: AAAI Press, 2023: 9190-9199. |
84 | LIU C, ZOPH B, NEUMANN M, et al. Progressive neural architecture search [C]// Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 19-35. |
85 | CAI H, GAN C, WANG T, et al. Once-for-All: train one network and specialize it for efficient deployment [EB/OL]. [2023-10-01]. . |
86 | DUAN Y, CHEN X, XU H, et al. TransNAS-Bench-101: improving transferability and generalizability of cross-task neural architecture search[C]// Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 5247-5256. |
87 | WEI T, WANG C, RUI Y, et al. Network morphism[C]// Proceedings of the 33rd International Conference on Machine Learning. New York: JMLR.org, 2016: 564-572. |
88 | LIU Y, SUN Y, XUE B, et al. A survey on evolutionary neural architecture search[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(2):550-570. |
89 | JIN H, SONG Q, HU X. Auto-Keras: an efficient neural architecture search system [C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data mining. New York: ACM, 2019: 1946-1956. |
90 | GAIER A, HA D. Weight agnostic neural networks[C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates, 2019: 5364-5378. |
91 | HUANG T, YOU S, WANG F, et al. GreedyNASv2: greedier search with a greedy path filter[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 11892-11901. |
92 | DONG P, NIU X, LI L, et al. Prior-guided One-shot neural architecture search[EB/OL]. (2022-07-27)[2023-10-01]. . |
93 | HE X, YAO J, WANG Y, et al. NAS-LID: efficient neural architecture search with local intrinsic dimension[C]// Proceedings of the 37th AAAI Conference on Artificial Intelligence. Menlo Park: AAAI Press, 2023: 7839-7847. |
94 | WANG H, GE C, CHEN H, et al. PreNAS: preferred One-shot learning towards efficient neural architecture search [EB/OL]. (2013-04-28)[2023-10-01]. . |
95 | BI Y, XUE B, ZHANG M. An evolutionary deep learning approach using genetic programming with convolution operators for image classification[C]// Proceedings of the 2019 IEEE/CVF Congress on Evolutionary Computation. Piscataway: IEEE, 2019: 3197-3204. |
96 | EVANS B, AL-SAHAF H, XUE B, et al. Evolutionary deep learning: a genetic programming approach to image classification[C]// Proceedings of the 2018 IEEE Congress on Evolutionary Computation. Piscataway: IEEE, 2018: 1-6. |
97 | EVANS B P, AI-SAHAF H, XUE B, et al. Genetic programming and gradient descent: a memetic approach to binary image classification[EB/OL]. (2019-09-28)[2023-10-01]. . |
98 | KLEIN A, FALKNER S, BARTELS S, et al. Fast Bayesian hyperparameter optimization on large datasets [J]. Electronic Journal of Statistics, 2017, 11(2): 4945-4968. |
[1] | Na WANG, Lin JIANG, Yuancheng LI, Yun ZHU. Optimization of tensor virtual machine operator fusion based on graph rewriting and fusion exploration [J]. Journal of Computer Applications, 2024, 44(9): 2802-2809. |
[2] | Yexin PAN, Zhe YANG. Optimization model for small object detection based on multi-level feature bidirectional fusion [J]. Journal of Computer Applications, 2024, 44(9): 2871-2877. |
[3] | Yun LI, Fuyou WANG, Peiguang JING, Su WANG, Ao XIAO. Uncertainty-based frame associated short video event detection method [J]. Journal of Computer Applications, 2024, 44(9): 2903-2910. |
[4] | Tingjie TANG, Jiajin HUANG, Jin QIN. Session-based recommendation with graph auxiliary learning [J]. Journal of Computer Applications, 2024, 44(9): 2711-2718. |
[5] | Rui ZHANG, Pengyun ZHANG, Meirong GAO. Self-optimized dual-modal multi-channel non-deep vestibular schwannoma recognition model [J]. Journal of Computer Applications, 2024, 44(9): 2975-2982. |
[6] | Jinjin LI, Guoming SANG, Yijia ZHANG. Multi-domain fake news detection model enhanced by APK-CNN and Transformer [J]. Journal of Computer Applications, 2024, 44(9): 2674-2682. |
[7] | Yunchuan HUANG, Yongquan JIANG, Juntao HUANG, Yan YANG. Molecular toxicity prediction based on meta graph isomorphism network [J]. Journal of Computer Applications, 2024, 44(9): 2964-2969. |
[8] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[9] | Xiyuan WANG, Zhancheng ZHANG, Shaokang XU, Baocheng ZHANG, Xiaoqing LUO, Fuyuan HU. Unsupervised cross-domain transfer network for 3D/2D registration in surgical navigation [J]. Journal of Computer Applications, 2024, 44(9): 2911-2918. |
[10] | Hang YANG, Wanggen LI, Gensheng ZHANG, Zhige WANG, Xin KAI. Multi-layer information interactive fusion algorithm based on graph neural network for session-based recommendation [J]. Journal of Computer Applications, 2024, 44(9): 2719-2725. |
[11] | Guanglei YAO, Juxia XIONG, Guowu YANG. Flower pollination algorithm based on neural network optimization [J]. Journal of Computer Applications, 2024, 44(9): 2829-2837. |
[12] | Ying HUANG, Jiayu YANG, Jiahao JIN, Bangrui WAN. Siamese mixed information fusion algorithm for RGBT tracking [J]. Journal of Computer Applications, 2024, 44(9): 2878-2885. |
[13] | Yu DU, Yan ZHU. Constructing pre-trained dynamic graph neural network to predict disappearance of academic cooperation behavior [J]. Journal of Computer Applications, 2024, 44(9): 2726-2731. |
[14] | Xingyao YANG, Yu CHEN, Jiong YU, Zulian ZHANG, Jiaying CHEN, Dongxiao WANG. Recommendation model combining self-features and contrastive learning [J]. Journal of Computer Applications, 2024, 44(9): 2704-2710. |
[15] | Shunyong LI, Shiyi LI, Rui XU, Xingwang ZHAO. Incomplete multi-view clustering algorithm based on self-attention fusion [J]. Journal of Computer Applications, 2024, 44(9): 2696-2703. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||