Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (10): 2983-2994.DOI: 10.11772/j.issn.1001-9081.2023101374

• Artificial intelligence •     Next Articles

Survey of neural architecture search

Renke SUN(), Zhiyu HUANGFU, Hu CHEN, Zhongnian LI, Xinzheng XU   

  1. School of Compute Science and Technology,China University of Mining and Technology,Xuzhou Jiangsu 221116,China
  • Received:2023-10-13 Revised:2024-01-17 Accepted:2024-01-19 Online:2024-10-15 Published:2024-10-10
  • Contact: Renke SUN
  • About author:HUANGFU Zhiyu, born in 2000, M. S. candidate. His research interests include machine learning, medical image processing.
    CHEN Hu, born in 1998, M. S. candidate. His research interests include machine learning, embedded artificial intelligence.
    LI Zhongnian, born in 1991, Ph. D., lecturer. His research interests include machine learning, medical image processing.
    XU Xinzheng, born in 1980, Ph. D., professor. His research interests include machine learning, embedded artificial intelligence.
  • Supported by:
    National Natural Science Foundation of China(61976217);Xuzhou Science and Technology Planning Project(KC21193)

神经架构搜索综述

孙仁科(), 皇甫志宇, 陈虎, 李仲年, 许新征   

  1. 中国矿业大学 计算机科学与技术学院,江苏 徐州 221116
  • 通讯作者: 孙仁科
  • 作者简介:孙仁科(1976—),男,江苏徐州人,讲师,博士,CCF会员,主要研究方向:机器学习、计算机视觉、嵌入式系统 srk@cumt.edu.cn
    皇甫志宇(2000—),男,河南商丘人,硕士研究生,主要研究方向:机器学习、医学图像处理
    陈虎(1998—),男,山东潍坊人,硕士研究生,主要研究方向:机器学习、嵌入式人工智能
    李仲年(1991—),男,江苏邳州人,讲师,博士,CCF会员,主要研究方向:机器学习、医学图像处理
    许新征(1980—),男,安徽宿州人,教授,博士,CCF高级会员,主要研究方向:机器学习、嵌入式人工智能。
  • 基金资助:
    国家自然科学基金资助项目(61976217);徐州市科技计划项目(KC21193)

Abstract:

In recent years, deep learning has made breakthroughs in many fields due to its powerful representation capability, and the architecture of neural network is crucial to the final performance. However, the design of high-performance neural network architecture heavily relies on the priori knowledge and experience of the researchers. Because there are a lot of parameters for neural networks, it is difficult to design optimal neural network architecture. Therefore, automated Neural Architecture Search (NAS) gains significant attention. NAS is a technique that uses machine learning to automatically search for optimal network architecture without the need for a lot of human effort, and is an important means of future neural network design. NAS is essentially a search optimization problem, by designing search space, search strategy and performance evaluation strategy, NAS can automatically search the optimal network structure. Detailed and comprehensive analysis, comparison and summary for the latest research progress of NAS were provided from three aspects: search space, search strategy, and performance evaluation strategy, which facilitates readers to quickly understand the development process of NAS. And the future research directions of NAS were proposed.

Key words: Neural Architecture Search (NAS), deep learning, machine learning, neural network, search space, searching strategy, performance evaluation strategy

摘要:

近几年,深度学习因具有强大的表征能力,已经在许多领域中取得了突破性的进展,而神经网络的架构对它的性能至关重要。然而,高性能的神经网络架构设计严重依赖研究人员的先验知识和经验,神经网络参数量庞大,难以设计最优的神经网络架构,因此自动神经架构搜索(NAS)获得了极大的关注。NAS是一种使用机器学习的方法,可以在不需要大量人力的情况下,自动搜索最优网络架构的技术,是未来神经网络设计的重要手段之一。NAS本质上是一个搜索优化问题,通过对搜索空间、搜索策略和性能评估策略的设计,自动搜索最优的网络结构。从搜索空间、搜索策略和性能评估策略这3个方面详细且全面地分析、比较和总结目前NAS的研究进展,方便读者快速了解神经架构搜索的发展过程和各项技术的优缺点,并提出NAS未来可能的研究发展方向。

关键词: 神经架构搜索, 深度学习, 机器学习, 神经网络, 搜索空间, 搜索策略, 性能评估策略

CLC Number: