| 1 | RAO S, TRON R, VIDAL R, et al. Motion segmentation in the presence of outlying, incomplete, or corrupted trajectories [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(10): 1832-1845. | 
																													
																							| 2 | VIDAL R, MA Y, SASTRY S. Generalized Principal Component Analysis (GPCA) [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(12): 1945-1959. | 
																													
																							| 3 | ELHAMIFAR E, VIDAL R. Sparse subspace clustering: algorithm, theory, and applications [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(11): 2765-2781. | 
																													
																							| 4 | PARK S, HAN S, KIM S, et al. Improving unsupervised image clustering with robust learning [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 12273-12282. | 
																													
																							| 5 | CAI J, FAN J, GUO W, et al. Efficient deep embedded subspace clustering [C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 21-30. | 
																													
																							| 6 | LI Z, TANG C, ZHENG X, et al. High-order correlation preserved incomplete multi-view subspace clustering [J]. IEEE Transactions on Image Processing, 2022, 31: 2067-2080. | 
																													
																							| 7 | LIU S, WANG S, ZHANG P, et al. Efficient one-pass multi-view subspace clustering with consensus anchors [J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36(7): 7576-7584. | 
																													
																							| 8 | LIU G, LIN Z, YAN S, et al. Robust recovery of subspace structures by low-rank representation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 171-184. | 
																													
																							| 9 | YOU C, LI C-G, ROBINSON D P, et al. Oracle based active set algorithm for scalable elastic net subspace clustering [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 3928-3937. | 
																													
																							| 10 | YOU C, ROBINSON D, VIDAL R. Scalable sparse subspace clustering by orthogonal matching pursuit [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 3918-3927. | 
																													
																							| 11 | MATSUSHIMA S, BRBIC M. Selective sampling-based scalable sparse subspace clustering [C]// Proceedings of the 33 rd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates, Inc., 2019: 12425-12434. | 
																													
																							| 12 | HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks [J]. Science, 2006, 313(5786): 504-507. | 
																													
																							| 13 | ZHOU P, HOU Y, FENG J. Deep adversarial subspace clustering [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 1596-1604. | 
																													
																							| 14 | JI P, ZHANG T, LI H, et al. Deep subspace clustering networks [C]// Proceedings of the 31 st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates, Inc., 2017: 23-32. | 
																													
																							| 15 | 尹明,吴浩杨,谢胜利,等.基于自注意力对抗的深度子空间聚类[J].自动化学报, 2022, 48(1): 271-281. | 
																													
																							|  | YIN M, WU H Y, XIE S L, et al. Self-attention adversarial based deep subspace clustering [J]. Acta Automatica Sinica, 2022, 48(1): 271-281. | 
																													
																							| 16 | 李凯,张可心.结构α-熵的加权高斯混合模型的子空间聚类[J].电子学报, 2022, 50(3): 718-725. | 
																													
																							|  | LI K, ZHANG K X. Structural α-entropy weighting Gaussian mixture model for subspace clustering [J]. Acta Electronica Sinica, 2022, 50(3): 718-725. | 
																													
																							| 17 | LeCUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition [J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. | 
																													
																							| 18 | SAMARIA F S, HARTER A C. Parameterisation of a stochastic model for human face identification [C]// Proceedings of the 1994 IEEE Workshop on Applications of Computer Vision. Piscataway: IEEE, 1994: 138-142. | 
																													
																							| 19 | GRAHAM D B, ALLINSON N M. Characterising virtual eigensignatures for general purpose face recognition [M]// WECHSLER H, PHILLIPS J P, BRUCE V, et al. Face Recognition: from Theory to Applications, NATO Series 163. Berlin: Springer, 1998: 446-456. | 
																													
																							| 20 | JI P, SALZMANN M, LI H. Efficient dense subspace clustering [C]// Proceedings of the 2014 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2014: 461-468. | 
																													
																							| 21 | PATEL V M, VIDAL R. Kernel sparse subspace clustering [C]// Proceedings of the 2014 IEEE International Conference on Image Processing. Piscataway: IEEE, 2014: 2849-2853. | 
																													
																							| 22 | MA Z, KANG Z, LUO G, et al. Towards clustering-friendly representations: subspace clustering via graph filtering [C]// Proceedings of the 28th ACM International Conference on Multimedia. New York: ACM, 2020: 3081-3089. | 
																													
																							| 23 | WEI L, CHEN Z, YIN J, et al. Adaptive graph convolutional subspace clustering [C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 6262-6271. | 
																													
																							| 24 | XIE J, GIRSHICK R, FARHADI A. Unsupervised deep embedding for clustering analysis [C]// Proceedings of the 33 rd International Conference on Machine Learning.New York: JMLR.org, 2016: 478-487. | 
																													
																							| 25 | MORADI FARD M, THONET T, GAUSSIER E. Deep k-means: jointly clustering with k-means and learning representations [J]. Pattern Recognition Letters, 2020, 138: 185-192. | 
																													
																							| 26 | HUANG Q, ZHANG Y, PENG H, et al. Deep subspace clustering to achieve jointly latent feature extraction and discriminative learning [J]. Neurocomputing, 2020, 404: 340-350. | 
																													
																							| 27 | BAEK S, YOON G, SONG J, et al. Deep self-representative subspace clustering network [J]. Pattern Recognition, 2021, 118: 108041. | 
																													
																							| 28 | LV J, KANG Z, LU X, et al. Pseudo-supervised deep subspace clustering [J]. IEEE Transactions on Image Processing, 2021, 30: 5252-5263. | 
																													
																							| 29 | PENG Z, LIU H, JIA Y, et al. Adaptive attribute and structure subspace clustering network [J]. IEEE Transactions on Image Processing, 2022, 31: 3430-3439. | 
																													
																							| 30 | VIDAL R, FAVARO P. Low rank subspace clustering (LRSC) [J]. Pattern Recognition Letters, 2014, 43: 47-61. | 
																													
																							| 31 | ABHADIOMHEN S E, WANG Z Y, SHEN X J. Coupled low rank representation and subspace clustering [J]. Applied Intelligence, 2022, 52(1): 530-546. | 
																													
																							| 32 | XU Y, CHEN S, LI J, et al. Fast subspace clustering by learning projective block diagonal representation [J]. Pattern Recognition, 2023, 135: 109152. | 
																													
																							| 33 | WANG L, WANG Y, DENG H, et al. Attention reweighted sparse subspace clustering [J]. Pattern Recognition, 2023, 139: 109438. | 
																													
																							| 34 | DIZAJI K G, HERANDI A, DENG C, et al. Deep clustering via joint convolutional autoencoder embedding and relative entropy minimization [C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 5747-5756. |