Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (2): 353-359.DOI: 10.11772/j.issn.1001-9081.2023030275
Special Issue: 人工智能
• Artificial intelligence • Previous Articles Next Articles
Received:
2023-03-15
Revised:
2023-05-26
Accepted:
2023-05-30
Online:
2023-06-30
Published:
2024-02-10
Contact:
Huazhu CHEN
About author:
ZHANG Zhuo, born in 1998, M. S. candidate. His research interests include image processing.
Supported by:
通讯作者:
陈花竹
作者简介:
张卓(1998—),男,河南商丘人,硕士研究生 ,主要研究方向:图像处理;
基金资助:
CLC Number:
Zhuo ZHANG, Huazhu CHEN. Deep subspace clustering based on multiscale self-representation learning with consistency and diversity[J]. Journal of Computer Applications, 2024, 44(2): 353-359.
张卓, 陈花竹. 基于一致性和多样性的多尺度自表示学习的深度子空间聚类[J]. 《计算机应用》唯一官方网站, 2024, 44(2): 353-359.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023030275
符号 | 含义 |
---|---|
编码器、解码器及全连接层的参数 | |
网络的深度 | |
所在网络的层级 | |
原始输入数据 | |
第 | |
第 | |
网络层嵌入特征共有的自表示系数矩阵 | |
将自表示系数矩阵 | |
伪标签矩阵 | |
第 | |
数据经过编码器后在子空间中的数据表示 | |
矩阵的 | |
矩阵的 | |
矩阵 C 的转置矩阵 | |
矩阵的Hadamard积 |
Tab. 1 Symbol description
符号 | 含义 |
---|---|
编码器、解码器及全连接层的参数 | |
网络的深度 | |
所在网络的层级 | |
原始输入数据 | |
第 | |
第 | |
网络层嵌入特征共有的自表示系数矩阵 | |
将自表示系数矩阵 | |
伪标签矩阵 | |
第 | |
数据经过编码器后在子空间中的数据表示 | |
矩阵的 | |
矩阵的 | |
矩阵 C 的转置矩阵 | |
矩阵的Hadamard积 |
自编码层 | Extended Yale B | ORL | COIL20 | Umist | ||||
---|---|---|---|---|---|---|---|---|
卷积核 | 通道数 | 卷积核 | 通道数 | 卷积核 | 通道数 | 卷积核 | 通道数 | |
编码层-1 | 5×5 | 10 | 5×5 | 5 | 3×3 | 5 | 3×3 | 20 |
编码层-2 | 3×3 | 20 | 3×3 | 3 | 3×3 | 10 | 3×3 | 10 |
编码层-3 | 3×3 | 30 | 3×3 | 3 | — | — | 3×3 | 5 |
解码层-3 | 3×3 | 30 | 3×3 | 3 | — | — | 3×3 | 5 |
解码层-2 | 3×3 | 20 | 3×3 | 3 | 3×3 | 10 | 3×3 | 10 |
解码层-1 | 5×5 | 10 | 5×5 | 5 | 3×3 | 5 | 3×3 | 20 |
Tab. 2 Network structures of different datasets
自编码层 | Extended Yale B | ORL | COIL20 | Umist | ||||
---|---|---|---|---|---|---|---|---|
卷积核 | 通道数 | 卷积核 | 通道数 | 卷积核 | 通道数 | 卷积核 | 通道数 | |
编码层-1 | 5×5 | 10 | 5×5 | 5 | 3×3 | 5 | 3×3 | 20 |
编码层-2 | 3×3 | 20 | 3×3 | 3 | 3×3 | 10 | 3×3 | 10 |
编码层-3 | 3×3 | 30 | 3×3 | 3 | — | — | 3×3 | 5 |
解码层-3 | 3×3 | 30 | 3×3 | 3 | — | — | 3×3 | 5 |
解码层-2 | 3×3 | 20 | 3×3 | 3 | 3×3 | 10 | 3×3 | 10 |
解码层-1 | 5×5 | 10 | 5×5 | 5 | 3×3 | 5 | 3×3 | 20 |
n | LRR | LRSC | SSC | AE+SSC | KSSC | SSC-OMP | EDSC | AE+EDSC | DSC | MLRDSC | MSCD-DSC |
---|---|---|---|---|---|---|---|---|---|---|---|
10 | 22.22 | 30.95 | 10.22 | 17.06 | 14.49 | 12.08 | 5.64 | 5.46 | 1.59 | 1.10 | 1.41 |
15 | 23.00 | 31.47 | 13.13 | 18.65 | 16.22 | 14.05 | 7.63 | 6.70 | 1.69 | 0.91 | 1.56 |
20 | 30.23 | 28.76 | 19.75 | 18.23 | 16.55 | 15.16 | 9.30 | 7.67 | 1.73 | 0.99 | 1.17 |
25 | 27.92 | 27.81 | 26.22 | 18.72 | 18.56 | 18.89 | 10.67 | 10.27 | 1.75 | 1.13 | 0.88 |
30 | 37.98 | 30.64 | 28.76 | 19.99 | 20.49 | 20.75 | 11.24 | 11.56 | 2.07 | 1.78 | 1.09 |
35 | 41.82 | 31.35 | 28.55 | 22.13 | 26.07 | 20.29 | 13.10 | 13.28 | 2.65 | 1.44 | 1.34 |
38 | 34.87 | 29.89 | 27.51 | 25.33 | 27.75 | 24.71 | 11.64 | 12.66 | 2.67 | 1.36 | 1.15 |
Tab. 3 Clustering error rates of different algorithms on Extended Yale B dataset
n | LRR | LRSC | SSC | AE+SSC | KSSC | SSC-OMP | EDSC | AE+EDSC | DSC | MLRDSC | MSCD-DSC |
---|---|---|---|---|---|---|---|---|---|---|---|
10 | 22.22 | 30.95 | 10.22 | 17.06 | 14.49 | 12.08 | 5.64 | 5.46 | 1.59 | 1.10 | 1.41 |
15 | 23.00 | 31.47 | 13.13 | 18.65 | 16.22 | 14.05 | 7.63 | 6.70 | 1.69 | 0.91 | 1.56 |
20 | 30.23 | 28.76 | 19.75 | 18.23 | 16.55 | 15.16 | 9.30 | 7.67 | 1.73 | 0.99 | 1.17 |
25 | 27.92 | 27.81 | 26.22 | 18.72 | 18.56 | 18.89 | 10.67 | 10.27 | 1.75 | 1.13 | 0.88 |
30 | 37.98 | 30.64 | 28.76 | 19.99 | 20.49 | 20.75 | 11.24 | 11.56 | 2.07 | 1.78 | 1.09 |
35 | 41.82 | 31.35 | 28.55 | 22.13 | 26.07 | 20.29 | 13.10 | 13.28 | 2.65 | 1.44 | 1.34 |
38 | 34.87 | 29.89 | 27.51 | 25.33 | 27.75 | 24.71 | 11.64 | 12.66 | 2.67 | 1.36 | 1.15 |
n | 不同算法的聚类错误率/% | ||||
---|---|---|---|---|---|
MLRDSC | 算法1 | 算法2 | 算法3 | 算法4 | |
10 | 1.10 | 1.78 | 2.17 | 2.03 | 1.41 |
15 | 0.91 | 1.35 | 1.35 | 1.56 | 1.56 |
20 | 0.99 | 1.25 | 1.17 | 1.25 | 1.17 |
25 | 1.13 | 0.94 | 0.88 | 0.94 | 0.88 |
30 | 1.78 | 1.20 | 1.15 | 1.15 | 1.09 |
35 | 1.44 | 1.43 | 1.43 | 1.43 | 1.34 |
38 | 1.36 | 1.27 | 1.32 | 1.23 | 1.15 |
Tab. 4 Ablation experiment results on Extended Yale B
n | 不同算法的聚类错误率/% | ||||
---|---|---|---|---|---|
MLRDSC | 算法1 | 算法2 | 算法3 | 算法4 | |
10 | 1.10 | 1.78 | 2.17 | 2.03 | 1.41 |
15 | 0.91 | 1.35 | 1.35 | 1.56 | 1.56 |
20 | 0.99 | 1.25 | 1.17 | 1.25 | 1.17 |
25 | 1.13 | 0.94 | 0.88 | 0.94 | 0.88 |
30 | 1.78 | 1.20 | 1.15 | 1.15 | 1.09 |
35 | 1.44 | 1.43 | 1.43 | 1.43 | 1.34 |
38 | 1.36 | 1.27 | 1.32 | 1.23 | 1.15 |
实验序号 | 错误率/% | |||
---|---|---|---|---|
1 | 0 | 75 | 1 | 22.50 |
2 | 10 | 0 | 1 | 14.75 |
3 | 10 | 75 | 0 | 14.50 |
4 | 10 | 75 | 1 | 11.00 |
Tab. 5 Parameter ablation experiment results on ORL
实验序号 | 错误率/% | |||
---|---|---|---|---|
1 | 0 | 75 | 1 | 22.50 |
2 | 10 | 0 | 1 | 14.75 |
3 | 10 | 75 | 0 | 14.50 |
4 | 10 | 75 | 1 | 11.00 |
数据集 | LRR | LRSC | SSC | AE+SSC | KSSC | SSC-OMP | EDSC | AE+EDSC | DSC | DASC | MLRDSC | MSCD-DSC |
---|---|---|---|---|---|---|---|---|---|---|---|---|
ORL | 33.50 | 32.50 | 29.50 | 26.75 | 34.25 | 37.05 | 27.25 | 26.25 | 14.00 | 11.75 | 11.25 | 11.00 |
COIL20 | 30.21 | 31.25 | 14.83 | 22.08 | 24.65 | 29.86 | 14.86 | 14.79 | 5.42 | 3.61 | 2.08 | 2.01 |
Umist | 30.21 | — | 34.69 | — | 34.69 | — | 30.69 | — | 26.88 | — | 26.87 | 23.33 |
Tab. 6 Clustering error rates for datasets ORL, COIL20 and Umist
数据集 | LRR | LRSC | SSC | AE+SSC | KSSC | SSC-OMP | EDSC | AE+EDSC | DSC | DASC | MLRDSC | MSCD-DSC |
---|---|---|---|---|---|---|---|---|---|---|---|---|
ORL | 33.50 | 32.50 | 29.50 | 26.75 | 34.25 | 37.05 | 27.25 | 26.25 | 14.00 | 11.75 | 11.25 | 11.00 |
COIL20 | 30.21 | 31.25 | 14.83 | 22.08 | 24.65 | 29.86 | 14.86 | 14.79 | 5.42 | 3.61 | 2.08 | 2.01 |
Umist | 30.21 | — | 34.69 | — | 34.69 | — | 30.69 | — | 26.88 | — | 26.87 | 23.33 |
1 | LAUER F, SCHNÖRR C. Spectral clustering of linear subspaces for motion segmentation[C]// Proceedings of the 2009 IEEE 12th International Conference on Computer Vision. Piscataway: IEEE, 2009: 678-685. 10.1109/iccv.2009.5459173 |
2 | RAO S, TRON R, VIDAL R, et al. Motion segmentation in the presence of outlying, incomplete, or corrupted trajectories[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 32(10): 1832-1845. 10.1109/tpami.2009.191 |
3 | CAO X, ZHANG C, FU H, et al. Diversity-induced multi-view subspace clustering[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 586-594. 10.1109/cvpr.2015.7298657 |
4 | ZHANG C, FU H, LIU S, et al. Low-rank tensor constrained multiview subspace clustering[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 1582-1590. 10.1109/iccv.2015.185 |
5 | YANG A Y, WRIGHT J, MA Y, et al. Unsupervised segmentation of natural images via lossy data compression[J]. Computer Vision and Image Understanding, 2008, 110(2): 212-225. 10.1016/j.cviu.2007.07.005 |
6 | JI P, ZHANG T, LI H, et al. Deep subspace clustering networks[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc. 2017: 23-32. |
7 | JI P, SALZMANN M, LI H. Efficient dense subspace clustering[C]// Proceedings of the 2014 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2014: 461-468. 10.1109/wacv.2014.6836065 |
8 | ZHOU P, HOU Y, FENG J. Deep adversarial subspace clustering[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 1596-1604. 10.1109/cvpr.2018.00172 |
9 | LV J, KANG Z, LU X, et al. Pseudo-supervised deep subspace clustering[J]. IEEE Transactions on Image Processing, 2021, 30: 5252-5263. 10.1109/tip.2021.3079800 |
10 | VALANARASU J M J, PATEL V M. Overcomplete deep subspace clustering networks[C]// Proceedings of the 2021 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2021: 746-755. 10.1109/wacv48630.2021.00079 |
11 | WU F, YUAN P, SHI G, et al. Robust subspace clustering network with dual-domain regularization[J]. Pattern Recognition Letters, 2021, 149: 44-50. 10.1016/j.patrec.2021.06.009 |
12 | PAN J, QIAN Y, LI F, et al. Image deep clustering based on local-topology embedding[J]. Pattern Recognition Letters, 2021, 151: 88-94. 10.1016/j.patrec.2021.08.004 |
13 | KHEIRANDISHFARD M, ZOHRIZADEH F, KAMANGAR F. Multi-level representation learning for deep subspace clustering[C]// Proceedings of the 2020 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2020: 2028-2037. 10.1109/wacv45572.2020.9093277 |
14 | LIU G, LIN Z, YAN S, et al. Robust recovery of subspace structures by low-rank representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 171-184. 10.1109/tpami.2012.88 |
15 | GUO X, WANG X, LING H. Exclusivity regularized machine: a new ensemble SVM classifier[C]// Proceedings of the 26th International Joint Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2017: 1739-1745. 10.24963/ijcai.2017/241 |
16 | NG A Y, JORDAN M I, WEISS Y. On spectral clustering: Analysis and an algorithm[C]// Proceedings of the 14th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2001: 849-856. |
17 | GEORGHIADES A S, BELHUMEUR P N, KRIEGMAN D J. From few to many: Illumination cone models for face recognition under variable lighting and pose[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(6): 643-660. 10.1109/34.927464 |
18 | SAMARIA F S, HARTER A C. Parameterisation of a stochastic model for human face identification[C]// Proceedings of 1994 IEEE Workshop on Applications of Computer Vision. Piscataway: IEEE, 1994: 138-142. 10.1109/acv.1994.341276 |
19 | McELROY D, WALSH C, MARKWICK A J, et al. The UMIST database for astrochemistry 2012[J]. Astronomy and Astrophysics, 2013, 550: A36. 10.1051/0004-6361/201220465 |
20 | NENE S, NAYAR S, MURASE H. Columbia Object Image Library (COIL-20) [DB/OL]. [2022-10-18]. . |
21 | VIDAL R, FAVARO P. Low rank subspace clustering (LRSC)[J]. Pattern Recognition Letters, 2014, 43: 47-61. 10.1016/j.patrec.2013.08.006 |
22 | ELHAMIFAR E, VIDAL R. Sparse subspace clustering: Algorithm, theory, and applications[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(11): 2765-2781. 10.1109/tpami.2013.57 |
23 | PATEL V M, VIDAL R. Kernel sparse subspace clustering[C]// Proceedings of the 2014 IEEE International Conference on Image Processing. Piscataway: IEEE, 2014: 2849-2853. 10.1109/icip.2014.7025576 |
24 | YOU C, ROBINSON D, VIDAL R. Scalable sparse subspace clustering by orthogonal matching pursuit[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 3918-3927. 10.1109/cvpr.2016.425 |
25 | LU C-Y, MIN H, ZHAO Z-Q, et al. Robust and efficient subspace segmentation via least squares regression[C]// Proceedings of the 2012 European Conference on Computer Vision. Berlin: Springer, 2012: 347-360. 10.1007/978-3-642-33786-4_26 |
[1] | Guanglei YAO, Juxia XIONG, Guowu YANG. Flower pollination algorithm based on neural network optimization [J]. Journal of Computer Applications, 2024, 44(9): 2829-2837. |
[2] | Wentao JIANG, Wanxuan LI, Shengchong ZHANG. Correlation filtering based target tracking with nonlinear temporal consistency [J]. Journal of Computer Applications, 2024, 44(8): 2558-2570. |
[3] | Qing WANG, Jieyu ZHAO, Xulun YE, Nongxiao WANG. Enhanced deep subspace clustering method with unified framework [J]. Journal of Computer Applications, 2024, 44(7): 1995-2003. |
[4] | Junna ZHANG, Xinxin WANG, Tianze LI, Xiaoyan ZHAO, Peiyan YUAN. Task offloading method based on dynamic service cache assistance [J]. Journal of Computer Applications, 2024, 44(5): 1493-1500. |
[5] | Shunwang FU, Qian CHEN, Zhi LI, Guomei WANG, Yu LU. Two-channel progressive feature filtering network for tampered image detection and localization [J]. Journal of Computer Applications, 2024, 44(4): 1303-1309. |
[6] | Yawei HUANG, Xuezhong QIAN, Wei SONG. Improved differential evolution algorithm based on dual-archive population size adaptive method [J]. Journal of Computer Applications, 2024, 44(12): 3844-3853. |
[7] | Tingting GAO, Zhongyuan YAO, Miao JIA, Xueming SI. Overview of on-chain and off-chain consistency protection technologies [J]. Journal of Computer Applications, 2024, 44(12): 3658-3668. |
[8] | Ziyi LI, Tingting QU, Qianpeng CHONG, Jindong XU. Remote sensing image segmentation network based on fuzzy multiscale features [J]. Journal of Computer Applications, 2024, 44(11): 3581-3586. |
[9] | Shuaihua ZHANG, Shufen ZHANG, Mingchuan ZHOU, Chao XU, Xuebin CHEN. Malicious traffic detection model based on semi-supervised federated learning [J]. Journal of Computer Applications, 2024, 44(11): 3487-3494. |
[10] | Lishuo YE, Zhixue HE. Multiscale time series anomaly detection incorporating wavelet decomposition [J]. Journal of Computer Applications, 2024, 44(10): 3300-3306. |
[11] | Qiujie LIU, Yuan WAN, Jie WU. Deep bi-modal source domain symmetrical transfer learning for cross-modal retrieval [J]. Journal of Computer Applications, 2024, 44(1): 24-31. |
[12] | Yongjian MA, Xuhua SHI, Peiyao WANG. Constrained multi-objective evolutionary algorithm based on two-stage search and dynamic resource allocation [J]. Journal of Computer Applications, 2024, 44(1): 269-277. |
[13] | Jianwen GAN, Yan CHEN, Peng ZHOU, Liang DU. Clustering ensemble algorithm with high-order consistency learning [J]. Journal of Computer Applications, 2023, 43(9): 2665-2672. |
[14] | Ruiqi WANG, Shujuan JI, Ning CAO, Yajie GUO. Semi-supervised fake job advertisement detection model based on consistency training [J]. Journal of Computer Applications, 2023, 43(9): 2932-2939. |
[15] | Jinghong WANG, Zhixia ZHOU, Hui WANG, Haokang LI. Attribute network representation learning with dual auto-encoder [J]. Journal of Computer Applications, 2023, 43(8): 2338-2344. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||