1 |
ALI S, KAZMI S A A, MALIK M M, et al. Energy management in high RER multi-microgrid system via energy trading and storage optimization [J]. IEEE Access, 2022, 10: 6541-6554.
|
2 |
黄秀丽,黄进,于鹏飞,等.电力无线专网中面向安全风险的分布式资源分配方法[J].计算机应用, 2020, 40(12): 3586-3593.
|
3 |
GAGRANI P, SMITH E. Action functional gradient descent algorithm for estimating escape paths in stochastic chemical reaction networks [J]. Physical Review E, 2023, 107(3): No.034305.
|
4 |
王宁,宋慧慧,张开华.基于距离加权重叠度估计与椭圆拟合优化的精确目标跟踪算法[J].计算机应用, 2021, 41(4): 1100-1105.
|
5 |
FAZLYAB M, PATERNAIN S, PRECIADO V M, et al. Prediction-correction interior-point method for time-varying convex optimization [J]. IEEE Transactions on Automatic Control, 2018, 63(7): 1973-1986.
|
6 |
HUANG B, ZOU Y, CHEN F, et al. Distributed time-varying economic dispatch via a prediction-correction method [J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69(10): 4215-4224.
|
7 |
BASTIANELLO N, CARLI R, SIMONETTO A. Extrapolation-based prediction-correction methods for time-varying convex optimization [J]. Signal Processing, 2023, 210: No.109089.
|
8 |
LI H, QIN S. A Hessian-based zeroing neurodynamic approach for quaternion-variable time-varying constrained optimization problems [J]. Neurocomputing, 2024, 564: No.126937.
|
9 |
ZHAO G, HE X, LI C. An inertial neurodynamic algorithm for collaborative time-varying energy management for energy internet containing distributed energy resources [J]. International Journal of Electrical Power and Energy Systems, 2023, 154: No.109406.
|
10 |
SHI Y, SHENG W, LI S, et al. A direct discretization recurrent neurodynamics method for time-variant nonlinear optimization with redundant robot manipulators [J]. Neural Networks, 2023, 164: 428-438.
|
11 |
BHAT S P, BERNSTEIN D S. Finite-time stability of continuous autonomous systems [J]. SIAM Journal on Control and Optimization, 2000, 38(3): 751-766.
|
12 |
POLYAKOV A. Nonlinear feedback design for fixed-time stabilization of linear control systems [J]. IEEE Transactions on Automatic Control, 2012, 57(8): 2106-2110.
|
13 |
WANG K, GONG P. A continuous algorithm for finite-time consensus of disturbed fractional-order multiagent systems over digraphs [J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2023, 70(11): 4148-4152.
|
14 |
XU J, LI C, HE X, et al. A fixed-time converging neurodynamic approach with time-varying coefficients for l1-minimization problem [J]. Information Sciences, 2024, 654: No.119876.
|
15 |
MOORTHY S, JOO Y H. Distributed leader-following formation control for multiple nonholonomic mobile robots via bioinspired neurodynamic approach [J]. Neurocomputing, 2022, 492: 308-321.
|
16 |
ZHENG W, WANG H, SUN F, et al. Finite-time control of mobile robot systems with unmeasurable angular and linear velocities via bioinspired neurodynamics approach [J]. Applied Soft Computing, 2019, 85: No.105753.
|
17 |
CHE H, WANG J, CICHOCKI A. Sparse signal reconstruction via collaborative neurodynamic optimization [J]. Neural Networks, 2022, 154: 255-269.
|
18 |
龚云鑫,刘桂华,张文凯,等.利用凸角点改进A*算法的路径规划方法[J].计算机工程与应用, 2023, 59(12): 309-315.
|
19 |
林韩熙,向丹,欧阳剑,等.移动机器人路径规划算法的研究综述[J].计算机工程与应用, 2021, 57(18): 38-48.
|
20 |
邓辅秦,黄焕钊,谭朝恩,等.结合遗传算法和滚动调度的多机器人任务分配算法[J].计算机应用, 2023, 43(12): 3833-3839.
|
21 |
王平,束小文,刘培元.基于人工势场法的多机编队重构防撞控制[J].无人系统技术, 2023, 6(5): 81-88.
|
22 |
BORWEIN J M, LEWIS A S. Convex analysis [M]// Convex Analysis and Nonlinear Optimization: Theory and Examples, CMSBM. New York: Springer, 2000: 65-96.
|
23 |
BAZARAA M S, SHERALI H D, SHETTY C M. Nonlinear programming: theory and algorithms [M]. 3rd ed. Hoboken, NJ: John Wiley & Sons, Inc., 2006.
|
24 |
HE S, HE X, HUANG T. A continuous-time consensus algorithm using neurodynamic system for distributed time-varying optimization with inequality constraints [J]. Journal of the Franklin Institute, 2021, 358(13): 6741-6758.
|
25 |
SUN S, XU J, REN W. Distributed continuous-time algorithms for time-varying constrained convex optimization [J]. IEEE Transactions on Automatic Control, 2023, 68(7): 3931-3946.
|
26 |
ARSLAN O, KODITSCHEK D E. Exact robot navigation using power diagrams [C]// Proceedings of the 2016 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2016: 1-8.
|
27 |
AURENHAMMER F. Power diagrams: properties, algorithms and applications [J]. SIAM Journal on Computing, 1987, 16(1): 78-96.
|