1 |
LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 3431-3440.
|
2 |
RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]// Proceeding of the 2015 Medical Image Computing and Computer-Assisted Intervention, LNCS 9351. Cham: Springer, 2015: 234-241.
|
3 |
IANDOLA F N, HAN S, MOSKEWICZ M W, et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and < 0.5 MB model size[EB/OL]. [2024-03-28]..
|
4 |
HOWARD A, SANDLER M, CHEN B, et al. Searching for MobileNetV3[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 1314-1324.
|
5 |
HAN K, WANG Y, TIAN Q, et al. GhostNet: more features from cheap operations[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 1577-1586.
|
6 |
MA N, ZHANG X, ZHENG H-T, et al. ShuffleNet V2: practical guidelines for efficient CNN architecture design[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11218. Cham: Springer, 2018: 122-138.
|
7 |
GSCHWEND D. ZynqNet: an FPGA-accelerated embedded convolutional neural network[EB/OL]. [2024-03-28]..
|
8 |
HINTON G, VINYALS O, DEAN J. Distilling the knowledge in a neural network[EB/OL]. [2024-03-28]..
|
9 |
JACOB B, KLIGYS S, CHEN B, et al. Quantization and training of neural networks for efficient integer-arithmetic-only inference[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 2704-2713.
|
10 |
HUBARA I, NAHSHAN Y, HANANI Y, et al. Accurate post training quantization with small calibration sets[C]// Proceedings of the 38th International Conference on Machine Learning. New York: JMLR.org, 2021: 4466-4475.
|
11 |
吴艳霞,梁楷,刘颖,等. 深度学习FPGA加速器的进展与趋势[J]. 计算机学报, 2019, 42(11): 2461-2480.
|
12 |
CHEN Y H, KRISHNA T, EMER J S, et al. Eyeriss: an energy-efficient reconfigurable accelerator for deep convolutional neural networks[J]. IEEE Journal of Solid-State Circuits, 2017, 52(1): 127-138.
|
13 |
王晓峰,蒋彭龙,周辉,等. 面向卷积神经网络的高并行度FPGA加速器设计[J]. 计算机应用, 2021, 41(3): 812-819.
|
14 |
DU Z, FASTHUBER R, CHEN T, et al. ShiDianNao: shifting vision processing closer to the sensor[C]// Proceedings of the 42nd Annual International Symposium on Computer Architecture. New York: ACM, 2015: 92-104.
|
15 |
HAN S, LIU X, MAO H, et al. EIE: efficient inference engine on compressed deep neural network[J]. ACM SIGARCH Computer Architecture News, 2016, 44(3): 243-254.
|
16 |
YAN R, YI J, HE J, et al. FPGA-based convolutional neural network design and implementation[C]// Proceedings of the 3rd Asia-Pacific Conference on Communications Technology and Computer Science. Piscataway: IEEE, 2023: 456-460.
|
17 |
ZHANG C, PRASANNA V. Frequency domain acceleration of convolutional neural networks on CPU-FPGA shared memory system[C]// Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. New York: ACM, 2017: 35-44.
|
18 |
GUO K, SUI L, QIU J, et al. Angel-Eye: a complete design flow for mapping CNN onto embedded FPGA[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2018, 37(1): 35-47.
|
19 |
YU C, GAO C, WANG J, et al. BiseNet V2: bilateral network with guided aggregation for real-time semantic segmentation[J]. International Journal of Computer Vision, 2021, 129(11): 3051-3068.
|
20 |
FAN M, LAI S, HUANG J, et al. Rethinking BiSeNet for real-time semantic segmentation[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 9711-9720.
|
21 |
WANG J, SUN K, CHENG T, et al. Deep high-resolution representation learning for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(10): 3349-3364.
|
22 |
XU J, XIONG Z, BHATTACHARYYA S P. PIDNet: a real-time semantic segmentation network inspired by PID controllers[C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 19529-19539.
|