Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (2): 556-562.DOI: 10.11772/j.issn.1001-9081.2024030289
• Advanced computing • Previous Articles
					
						                                                                                                                                                                                                                                                    Wujiu FU, Lin ZHOU, Jianjie DENG, Yong YOU( )
)
												  
						
						
						
					
				
Received:2024-03-20
															
							
																	Revised:2024-04-23
															
							
																	Accepted:2024-04-24
															
							
							
																	Online:2024-05-21
															
							
																	Published:2025-02-10
															
							
						Contact:
								Yong YOU   
													About author:FU Wujiu, born in 1956, professor. His research interests include chaotic dynamics.通讯作者:
					游泳
							作者简介:符五久(1956—),男,安徽无为人,教授,主要研究方向:混沌动力学CLC Number:
Wujiu FU, Lin ZHOU, Jianjie DENG, Yong YOU. Recurrence formula for initial value problems of fractional-order autonomous dynamics system and its application[J]. Journal of Computer Applications, 2025, 45(2): 556-562.
符五久, 周林, 邓建杰, 游泳. 分数阶自治动力学系统初值问题的递推公式及其应用[J]. 《计算机应用》唯一官方网站, 2025, 45(2): 556-562.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024030289
| 1 | MATHAI A M, HAUBOLD H J. Matrix methods and fractional calculus[M]. Singapore: World Scientific Publishing, 2018. | 
| 2 | ELWY O, ABDELATY A M, SAID L A, et al. Fractional calculus definitions, approximations and engineering applications[J]. Journal of Engineering and Applied Science, 2020, 67(1): 1-30. | 
| 3 | PATNAIK S, HOLLKAMP J P, SEMPERLOTTI F. Applications of variable-order fractional operators: a review[J]. Proceedings of the Royal Society A, 2020, 476(2234): No.20190498. | 
| 4 | METZLER R, KLAFTER J. The random walk’s guide to anomalous diffusion: a fractional dynamics approach[J]. Physics Reports, 2000, 339(1): 1-77. | 
| 5 | WADHWA A, BHARDWAJ A. Enhancement of MRI images of brain tumor using Grünwald Letnikov fractional differential mask[J]. Multimedia Tools and Applications, 2020, 79(35/36): 25379-25402. | 
| 6 | XU K, LIU J, MIAO J, et al. An improved SIFT algorithm based on adaptive fractional differential[J]. Journal of Ambient Intelligence and Humanized Computing, 2019, 10(8): 3297-3305. | 
| 7 | PAN H, CHANG K, PAN S. Research on fingerprint image enhancement algorithm based on adaptive fractional differential[J]. IOP Conference Series: Earth and Environmental Science, 2019, 234: No.012012. | 
| 8 | BAGLEY R L, CALICO R A. Fractional order state equations for the control of viscoelastically damped structures[J]. Journal of Guidance, Control, and Dynamics, 1991, 14(2): 304-311. | 
| 9 | WEI Y, PETER W T, DU B, et al. An innovative fixed-pole numerical approximation for fractional order systems[J]. ISA Transactions, 2016, 62: 94-102. | 
| 10 | DEBNATH L. Recent applications of fractional calculus to science and engineering[J]. International Journal of Mathematics and Mathematical Sciences, 2003, 2003: No.753601. | 
| 11 | WIEMAN A. Nonlinear viscoelastic solids — a review[J]. Mathematics and Mechanics of Solids, 2009, 14(3): 300-366. | 
| 12 | KOELLER R C. Polynomial operators, Stieltjes convolution, and fractional calculus in hereditary mechanics[J]. Acta Mechanica, 1986, 58(3/4): 251-264. | 
| 13 | TANG J, NIU L, XIONG X, et al. Viscoelasticity of rubber springs affects vibration characteristics of a flip-flow screen with the high G value[J]. IEEE Access, 2020, 8: 26950-26965. | 
| 14 | RIDA S Z, FARGHALY A A, AZOZ S A, et al. Global stability of a delayed fractional-order SEI epidemic model with logistic growth[J]. Applied Mathematics and Information Sciences, 2021, 15(1): 1-12. | 
| 15 | GUO C, FANG S. Stability and approximate analytic solutions of the fractional Lotka-Volterra equations for three competitors[J]. Advances in Difference Equations, 2016, 2016: No.219. | 
| 16 | ELSADANY A A, MATOUK A E. Dynamical behaviors of fractional-order Lotka-Volterra predator-prey model and its discretization[J]. Journal of Applied Mathematics and Computing, 2015, 49(1/2): 269-283. | 
| 17 | AGARWAL R P, BELMEKKI M, BENCHOHRA M. Existence results for semilinear functional differential inclusions involving Riemann-Liouville fractional derivative[J]. Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis, 2010, 17(3): 347-361. | 
| 18 | AGARWAL R P, BENCHOHRA M, HAMANI S. A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions[J]. Acta Applicandae Mathematicae, 2010, 109: 973-1033. | 
| 19 | DHAGE B C. Existence of extremal solutions for discontinuous functional integral equations[J]. Applied Mathematics Letters, 2006, 19(9): 881-886. | 
| 20 | DHAGE B C. Hybrid fixed point theory for strictly monotone increasing multi-valued mappings with applications[J]. Computers and Mathematics with Applications, 2007, 53(5): 803-824. | 
| 21 | LAKSHMIKANTHAM V. Theory of fractional functional differential equations[J]. Nonlinear Analysis: Theory, Methods and Applications, 2008, 69(10): 3337-3343. | 
| 22 | LAKSHMIKANTHAM V, VATSALA A S. Basic theory of fractional differential equations[J]. Nonlinear Analysis: Theory, Methods and Applications, 2008, 69(8): 2677-2682. | 
| 23 | IBRAHIM R W, MOMANI S. On the existence and uniqueness of solutions of a class of fractional differential equations[J]. Journal of Mathematical Analysis and Applications, 2007, 334(1): 1-10. | 
| 24 | JARADAT O K, AL-OMARI A, MOMANI S. Existence of the mild solution for fractional semilinear initial value problems[J]. Nonlinear Analysis: Theory, Methods and Applications, 2008, 69(9): 3153-3159. | 
| 25 | DHAGE B C. A general multi-valued hybrid fixed point theorem and perturbed differential inclusions[J]. Nonlinear Analysis: Theory, Methods and Applications, 2006, 64(12): 2747-2772. | 
| 26 | LIN W. Global existence theory and chaos control of fractional differential equations[J]. Journal of Mathematical Analysis and Applications, 2007, 332(1): 709-726. | 
| 27 | ZHANG S. Existence of positive solution for some class of nonlinear fractional differential equations[J]. Journal of Mathematical Analysis and Applications, 2003, 278(1): 136-148. | 
| 28 | ZHANG S. The existence of a positive solution for a nonlinear fractional differential equation[J]. Journal of Mathematical Analysis and Applications, 2000, 252(2): 804-812. | 
| 29 | BAI Z, LÜ H. Positive solutions for boundary value problem of nonlinear fractional differential equation[J]. Journal of Mathematical Analysis and Applications, 2005, 311(2): 495-505. | 
| 30 | BAI C. Positive solutions for nonlinear fractional differential equations with coefficient that changes sign[J]. Nonlinear Analysis: Theory, Methods and Applications, 2006, 64(4): 677-685. | 
| 31 | LU X, LIU F. The explicit and implicit finite difference approximations for a space fractional advection diffusion equation[C]// Computational Mechanics Abstract (Volume 1): Abstracts of the Papers Presented at the Minisymposium Sessions of the 6th World Congress on Computational Mechanics in conjunction with the 2nd Asian-Pacific Congress on Computational Mechanics. Cham: Springer, 2004: 120-120. | 
| 32 | MEERSCHAERT M M, TADJERAN C. Finite difference approximations for fractional advection-dispersion flow equations[J]. Journal of Computational and Applied Mathematics, 2004, 172(1): 65-77. | 
| 33 | ZHUANG P, LIU F. Implicit difference approximation for the time fractional diffusion equation[J]. Journal of Applied Mathematics and Computing, 2006, 22(3): 87-99. | 
| 34 | LIU Q, LIU F, TURNER I, et al. Finite element approximation for a modified anomalous subdiffusion equation[J]. Applied Mathematical Modelling, 2011, 35(8): 4103-4116. | 
| 35 | JIA L, CHEN H, WANG H. Mixed-type Galerkin variational principle and numerical simulation for a generalized nonlocal elastic model[J]. Journal of Scientific Computing, 2017, 71(2): 660-681. | 
| 36 | LI Y, CHEN H, WANG H. A mixed-type Galerkin variational formulation and fast algorithms for variable-coefficient fractional diffusion equations[J]. Mathematical Methods in the Applied Sciences, 2017, 40(14): 5018-5034. | 
| 37 | FIX G J, ROOF J P. Least squares finite-element solution of a fractional order two-point boundary value problem[J]. Computers and Mathematics with Applications, 2004, 48(7/8): 1017-1033. | 
| 38 | PODLUBNY I. Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications[M]. San Diego, CA: Academic Press, 1998. | 
| 39 | DENG W. Short memory principle and a predictor-corrector approach for fractional differential equations[J]. Journal of Computational and Applied Mathematics, 2007, 206(1): 174-188. | 
| 40 | TOMOVSKI Z, GARRA R. Analytic solutions of fractional integro-differential equations of Volterra type with variable coefficients[J]. Fractional Calculus and Applied Analysis, 2014, 17(1): 38-60. | 
| 41 | 内藤敏机,原惟行,日野义之,等. 时滞微分方程——泛函微分方程引论[M]. 马万彪,陆征一,译. 北京:科学出版社, 2013. | 
| NAITO T, HARA T, HINO Y, et al. Differential equations with time lag: introduction to functional differential equations[M]. MA W B, LU Z Y, translated. Beijing: Science Press, 2013. | |
| 42 | 高心,刘兴文,邵仕泉. 分数阶动力学系统的混沌、控制与同步[M].成都:电子科技大学出版社, 2010. | 
| GAO X, LIU X W, SHAO S Q. Chaos, control and synchronization of fractional order dynamic systems[M]. Chengdu: University of Electronic Science and Technology of China Press, 2010. | |
| 43 | EDELMAN M. On stability of fixed points and chaos in fractional systems[J]. Chaos, 2018, 28(2): No.023112. | 
| 44 | 刘杉杉,高飞,李文琴. 二维Logistic分数阶微分方程的离散化过程[J]. 计算机应用, 2019, 39(1): 305-310. | 
| LIU S S, GAO F, LI W Q. Discretization process of coupled Logistic fractional-order differential equation[J]. Journal of Computer Applications, 2019, 39(1): 305-310. | 
| [1] | Xueming LI, Guohao WU, Shangbo ZHOU, Xiaoran LIN, Hongbin XIE. Image instance segmentation model based on fractional-order network and reinforcement learning [J]. Journal of Computer Applications, 2022, 42(2): 574-583. | 
| [2] | WANG Yaqing ZHOU Shangbo. Image encryption algorithm based on fractional-order Chen chaotic system [J]. Journal of Computer Applications, 2013, 33(04): 1043-1046. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||