1 |
REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
|
2 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 779-788.
|
3 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector [C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9905. Cham: Springer, 2016: 21-37.
|
4 |
LAI H, CHEN L, LIU W, et al. STC-YOLO: small object detection network for traffic signs in complex environments [J]. Sensors, 2023, 23(11): No.5307.
|
5 |
ZHU Z, LIANG D, ZHANG S, et al. Traffic-sign detection and classification in the wild [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 2110-2118.
|
6 |
LI S, WANG S, WANG P. A small object detection algorithm for traffic signs based on improved YOLOv7 [J]. Sensors, 2023, 23(16): No.7145.
|
7 |
WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 7464-7475.
|
8 |
胡均平,王鸿树,戴小标,等. 改进YOLOv5的小目标交通标志实时检测算法[J]. 计算机工程与应用, 2023, 59(2):185-193.
|
9 |
嵇文,刘全金,黄崇文,等. 基于Swin-Transformer的YOLOX交通标志检测[J]. 无线电通信技术, 2023, 49(3):547-555.
|
10 |
LIU Z, LIN Y, CAO Y, et al. Swin Transformer: hierarchical vision Transformer using shifted windows [C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 9992-10002.
|
11 |
GE Z, LIU S, WANG F, et al. YOLOX: exceeding YOLO series in 2021 [EB/OL]. [2023-11-12]. .
|
12 |
LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 8759-8768.
|
13 |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778.
|
14 |
FENG C, ZHONG Y, GAO Y, et al. TOOD: task-aligned one-stage object detection [C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 3490-3499.
|
15 |
LI X, WANG W, WU L, et al. Generalized focal loss: learning qualified and distributed bounding boxes for dense object detection[C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2020: 21002-21012.
|
16 |
LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 936-944.
|
17 |
TONG Z, CHEN Y, XU Z, et al. Wise-IoU: bounding box regression loss with dynamic focusing mechanism [EB/OL]. [2023-11-07]..
|
18 |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection [C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2999-3007.
|
19 |
YUN S, HAN D, CHUN S, et al. CutMix: regularization strategy to train strong classifiers with localizable features [C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 6022-6031.
|
20 |
LI C, LI L, JIANG H, et al. YOLOv6: a single-stage object detection framework for industrial applications [EB/OL]. [2023-11-25]. .
|
21 |
WANG C, HE W, NIE Y, et al. Gold-YOLO: efficient object detector via gather-and-distribute mechanism [C]// Proceedings of the 37th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2023: 51094-51112.
|
22 |
XU X, JIANG Y, CHEN W, et al. DAMO-YOLO: a report on real-time object detection design [EB/OL]. [2023-12-12]. .
|
23 |
WANG C Y, YEH I H, LIAO H Y M. YOLOv9: learning what you want to learn using programmable gradient information [EB/OL]. [2023-12-14]. .
|