Journal of Computer Applications ›› 0, Vol. ›› Issue (): 274-279.DOI: 10.11772/j.issn.1001-9081.2024030360
• Multimedia computing and computer simulation • Previous Articles Next Articles
Bin WANG(
), Honghua XU, Doucheng SUN, Yongfan YU
Received:2024-04-01
Revised:2024-05-23
Accepted:2024-05-27
Online:2025-01-24
Published:2024-12-31
Contact:
Bin WANG
通讯作者:
王斌
作者简介:王斌(2000—),男,湖南株洲人,硕士研究生,主要研究方向:目标检测、图像处理基金资助:CLC Number:
Bin WANG, Honghua XU, Doucheng SUN, Yongfan YU. Small object detection for traffic signs based on improved YOLOv8 algorithm[J]. Journal of Computer Applications, 0, (): 274-279.
王斌, 徐洪华, 孙兜成, 俞泳帆. 基于YOLOv8算法改进的小目标交通标志检测[J]. 《计算机应用》唯一官方网站, 0, (): 274-279.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024030360
| 数据集 | 交通标志图像数 | 交通标志实例数 |
|---|---|---|
| 训练集 | 6 773 | 16 754 |
| 验证集 | 1 954 | 4 880 |
| 测试集 | 1 011 | 2 578 |
| 数据集 | 交通标志图像数 | 交通标志实例数 |
|---|---|---|
| 训练集 | 6 773 | 16 754 |
| 验证集 | 1 954 | 4 880 |
| 测试集 | 1 011 | 2 578 |
| 参数 | 默认值 | 描述信息 |
|---|---|---|
| epochs | 300 | 训练轮次 |
| batch | 64 | 训练批次 |
| optimizer | SGD | 优化器 |
| fliplr | 0.5 | 图像数据左右旋转的概率 |
| data | tt100k_mt100.yaml | 训练所用的数据集配置文件 |
| imgsz | 640 | 输入图像尺寸 |
| 参数 | 默认值 | 描述信息 |
|---|---|---|
| epochs | 300 | 训练轮次 |
| batch | 64 | 训练批次 |
| optimizer | SGD | 优化器 |
| fliplr | 0.5 | 图像数据左右旋转的概率 |
| data | tt100k_mt100.yaml | 训练所用的数据集配置文件 |
| imgsz | 640 | 输入图像尺寸 |
| 连接方式 | P | R | mAP50 | mAP50:95 |
|---|---|---|---|---|
| 无残差连接 | 76.8 | 63.4 | 73.1 | 55.8 |
| 直接残差连接 | 74.9 | 64.7 | 73.3 | 55.7 |
| Sigmoid残差连接 | 74.0 | 65.4 | 72.7 | 54.7 |
| 1×1卷积残差连接 | 79.6 | 65.4 | 75.2 | 57.1 |
| 连接方式 | P | R | mAP50 | mAP50:95 |
|---|---|---|---|---|
| 无残差连接 | 76.8 | 63.4 | 73.1 | 55.8 |
| 直接残差连接 | 74.9 | 64.7 | 73.3 | 55.7 |
| Sigmoid残差连接 | 74.0 | 65.4 | 72.7 | 54.7 |
| 1×1卷积残差连接 | 79.6 | 65.4 | 75.2 | 57.1 |
| 损失函数 | P | R | mAP50 | mAP50:95 |
|---|---|---|---|---|
| CIoU | 76.8 | 63.4 | 73.1 | 55.8 |
| WIoU v1 | 79.7 | 60.2 | 72.0 | 54.5 |
| WIoU v2 | 77.8 | 63.1 | 73.4 | 55.5 |
| WIoU v3( | 76.2 | 63.7 | 72.6 | 54.9 |
| WIoU v3( | 75.5 | 67.1 | 74.5 | 56.1 |
| WIoU v3( | 82.1 | 64.7 | 75.1 | 56.7 |
| WIoU v3( | 79.4 | 64.6 | 75.3 | 56.8 |
| WIoU v3( | 81.1 | 65.3 | 75.9 | 56.2 |
| WIoU v3( | 77.8 | 68.3 | 75.7 | 55.2 |
| 损失函数 | P | R | mAP50 | mAP50:95 |
|---|---|---|---|---|
| CIoU | 76.8 | 63.4 | 73.1 | 55.8 |
| WIoU v1 | 79.7 | 60.2 | 72.0 | 54.5 |
| WIoU v2 | 77.8 | 63.1 | 73.4 | 55.5 |
| WIoU v3( | 76.2 | 63.7 | 72.6 | 54.9 |
| WIoU v3( | 75.5 | 67.1 | 74.5 | 56.1 |
| WIoU v3( | 82.1 | 64.7 | 75.1 | 56.7 |
| WIoU v3( | 79.4 | 64.6 | 75.3 | 56.8 |
| WIoU v3( | 81.1 | 65.3 | 75.9 | 56.2 |
| WIoU v3( | 77.8 | 68.3 | 75.7 | 55.2 |
| 训练集增强 | 特征残差连接 | 增加检测层P2 | I-PAFPN | WIoU v3 | fliplr=0.0 | params/106 | 计算成本/GFLOPs | mAP50/% | mAP50:95/% |
|---|---|---|---|---|---|---|---|---|---|
| — | — | — | — | — | — | 3.0 | 8.2 | 73.1 | 55.8 |
| √ | — | — | — | — | — | 3.0 | 8.2 | 76.4 | 57.9 |
| — | √ | — | — | — | — | 3.1 | 8.5 | 75.2 | 57.1 |
| — | — | √ | — | — | — | 3.0 | 13.5 | 77.4 | 59.0 |
| — | — | — | √ | — | — | 5.5 | 20.2 | 74.8 | 56.4 |
| — | — | — | — | √ | — | 3.0 | 8.2 | 75.3 | 56.8 |
| — | — | — | — | — | √ | 3.0 | 8.2 | 76.9 | 58.6 |
| √ | √ | — | — | — | — | 3.1 | 8.5 | 76.1 | 58.3 |
| √ | √ | √ | — | — | — | 3.1 | 13.7 | 81.3 | 61.8 |
| √ | √ | √ | √ | — | — | 6.4 | 59.1 | 87.4 | 66.1 |
| √ | √ | √ | √ | √ | — | 6.4 | 59.1 | 88.3 | 66.5 |
| √ | √ | √ | √ | √ | √ | 6.4 | 59.1 | 90.2 | 68.3 |
| 训练集增强 | 特征残差连接 | 增加检测层P2 | I-PAFPN | WIoU v3 | fliplr=0.0 | params/106 | 计算成本/GFLOPs | mAP50/% | mAP50:95/% |
|---|---|---|---|---|---|---|---|---|---|
| — | — | — | — | — | — | 3.0 | 8.2 | 73.1 | 55.8 |
| √ | — | — | — | — | — | 3.0 | 8.2 | 76.4 | 57.9 |
| — | √ | — | — | — | — | 3.1 | 8.5 | 75.2 | 57.1 |
| — | — | √ | — | — | — | 3.0 | 13.5 | 77.4 | 59.0 |
| — | — | — | √ | — | — | 5.5 | 20.2 | 74.8 | 56.4 |
| — | — | — | — | √ | — | 3.0 | 8.2 | 75.3 | 56.8 |
| — | — | — | — | — | √ | 3.0 | 8.2 | 76.9 | 58.6 |
| √ | √ | — | — | — | — | 3.1 | 8.5 | 76.1 | 58.3 |
| √ | √ | √ | — | — | — | 3.1 | 13.7 | 81.3 | 61.8 |
| √ | √ | √ | √ | — | — | 6.4 | 59.1 | 87.4 | 66.1 |
| √ | √ | √ | √ | √ | — | 6.4 | 59.1 | 88.3 | 66.5 |
| √ | √ | √ | √ | √ | √ | 6.4 | 59.1 | 90.2 | 68.3 |
| 模型 | params/106 | 计算成本/GFLOPs | mAP50 /% | mAP50:95 /% |
|---|---|---|---|---|
| YOLOv8s | 11.2 | 28.7 | 83.6 | 64.2 |
| YOLOv8l | 25.9 | 79.2 | 86.1 | 67.0 |
| 本文模型 | 6.4 | 59.1 | 90.2 | 68.3 |
| 模型 | params/106 | 计算成本/GFLOPs | mAP50 /% | mAP50:95 /% |
|---|---|---|---|---|
| YOLOv8s | 11.2 | 28.7 | 83.6 | 64.2 |
| YOLOv8l | 25.9 | 79.2 | 86.1 | 67.0 |
| 本文模型 | 6.4 | 59.1 | 90.2 | 68.3 |
| 模型 | params/106 | 计算成本/GFLOPs | 推理时间/ms | 帧率/(frame·s-1) | P/% | R/% | mAP50/% | mAP50:95/% |
|---|---|---|---|---|---|---|---|---|
| YOLOv5n | 1.80 | 4.40 | 6.2 | 161 | 69.8 | 44.4 | 50.0 | 36.1 |
| YOLOv6n | 4.70 | 11.40 | 8.0 | 125 | 50.2 | 72.9 | 65.9 | 50.2 |
| YOLOv7-tiny | 6.10 | 13.60 | 4.6 | 218 | 56.4 | 47.3 | 43.7 | 31.5 |
| YOLOv8n | 3.00 | 8.20 | 6.8 | 147 | 76.8 | 63.4 | 73.1 | 55.8 |
| GOLD-YOLOv8n | 5.00 | 11.20 | 18.1 | 55 | 71.4 | 60.7 | 68.9 | 52.8 |
| DAMO-YOLO-T | 8.34 | 17.67 | 3.4 | 294 | — | — | 64.1 | 47.2 |
| YOLOv9-C | 51.10 | 239.40 | 20.0 | 50 | 88.2 | 80.3 | 88.7 | 69.1 |
| GELAN-C | 25.40 | 103.40 | 14.5 | 69 | 89.7 | 78.8 | 88.4 | 69.0 |
| 本文模型 | 6.40 | 59.10 | 8.4 | 119 | 90.5 | 83.2 | 90.2 | 68.3 |
| 模型 | params/106 | 计算成本/GFLOPs | 推理时间/ms | 帧率/(frame·s-1) | P/% | R/% | mAP50/% | mAP50:95/% |
|---|---|---|---|---|---|---|---|---|
| YOLOv5n | 1.80 | 4.40 | 6.2 | 161 | 69.8 | 44.4 | 50.0 | 36.1 |
| YOLOv6n | 4.70 | 11.40 | 8.0 | 125 | 50.2 | 72.9 | 65.9 | 50.2 |
| YOLOv7-tiny | 6.10 | 13.60 | 4.6 | 218 | 56.4 | 47.3 | 43.7 | 31.5 |
| YOLOv8n | 3.00 | 8.20 | 6.8 | 147 | 76.8 | 63.4 | 73.1 | 55.8 |
| GOLD-YOLOv8n | 5.00 | 11.20 | 18.1 | 55 | 71.4 | 60.7 | 68.9 | 52.8 |
| DAMO-YOLO-T | 8.34 | 17.67 | 3.4 | 294 | — | — | 64.1 | 47.2 |
| YOLOv9-C | 51.10 | 239.40 | 20.0 | 50 | 88.2 | 80.3 | 88.7 | 69.1 |
| GELAN-C | 25.40 | 103.40 | 14.5 | 69 | 89.7 | 78.8 | 88.4 | 69.0 |
| 本文模型 | 6.40 | 59.10 | 8.4 | 119 | 90.5 | 83.2 | 90.2 | 68.3 |
| 1 | REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. |
| 2 | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 779-788. |
| 3 | LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector [C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9905. Cham: Springer, 2016: 21-37. |
| 4 | LAI H, CHEN L, LIU W, et al. STC-YOLO: small object detection network for traffic signs in complex environments [J]. Sensors, 2023, 23(11): No.5307. |
| 5 | ZHU Z, LIANG D, ZHANG S, et al. Traffic-sign detection and classification in the wild [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 2110-2118. |
| 6 | LI S, WANG S, WANG P. A small object detection algorithm for traffic signs based on improved YOLOv7 [J]. Sensors, 2023, 23(16): No.7145. |
| 7 | WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 7464-7475. |
| 8 | 胡均平,王鸿树,戴小标,等. 改进YOLOv5的小目标交通标志实时检测算法[J]. 计算机工程与应用, 2023, 59(2):185-193. |
| 9 | 嵇文,刘全金,黄崇文,等. 基于Swin-Transformer的YOLOX交通标志检测[J]. 无线电通信技术, 2023, 49(3):547-555. |
| 10 | LIU Z, LIN Y, CAO Y, et al. Swin Transformer: hierarchical vision Transformer using shifted windows [C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 9992-10002. |
| 11 | GE Z, LIU S, WANG F, et al. YOLOX: exceeding YOLO series in 2021 [EB/OL]. [2023-11-12]. . |
| 12 | LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 8759-8768. |
| 13 | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. |
| 14 | FENG C, ZHONG Y, GAO Y, et al. TOOD: task-aligned one-stage object detection [C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 3490-3499. |
| 15 | LI X, WANG W, WU L, et al. Generalized focal loss: learning qualified and distributed bounding boxes for dense object detection[C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2020: 21002-21012. |
| 16 | LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 936-944. |
| 17 | TONG Z, CHEN Y, XU Z, et al. Wise-IoU: bounding box regression loss with dynamic focusing mechanism [EB/OL]. [2023-11-07].. |
| 18 | LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection [C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2999-3007. |
| 19 | YUN S, HAN D, CHUN S, et al. CutMix: regularization strategy to train strong classifiers with localizable features [C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 6022-6031. |
| 20 | LI C, LI L, JIANG H, et al. YOLOv6: a single-stage object detection framework for industrial applications [EB/OL]. [2023-11-25]. . |
| 21 | WANG C, HE W, NIE Y, et al. Gold-YOLO: efficient object detector via gather-and-distribute mechanism [C]// Proceedings of the 37th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2023: 51094-51112. |
| 22 | XU X, JIANG Y, CHEN W, et al. DAMO-YOLO: a report on real-time object detection design [EB/OL]. [2023-12-12]. . |
| 23 | WANG C Y, YEH I H, LIAO H Y M. YOLOv9: learning what you want to learn using programmable gradient information [EB/OL]. [2023-12-14]. . |
| [1] | Haifeng WU, Liqing TAO, Yusheng CHENG. Partial label regression algorithm integrating feature attention and residual connection [J]. Journal of Computer Applications, 2025, 45(8): 2530-2536. |
| [2] | Liang CHEN, Xuan WANG, Kun LEI. Helmet wearing detection algorithm for complex scenarios based on cross-layer multi-scale feature fusion [J]. Journal of Computer Applications, 2025, 45(7): 2333-2341. |
| [3] | Bogan FAN, Shuqing WANG, Kaiyuan CHEN. Small target detection model for UAV aerial photography based on improved YOLOv8 [J]. Journal of Computer Applications, 2025, 45(7): 2342-2350. |
| [4] | Dehui ZHOU, Jun ZHAO, Jinfeng CHENG. Tiny defect detection algorithm for bearing surface based on RT-DETR [J]. Journal of Computer Applications, 2025, 45(6): 1987-1997. |
| [5] | Quan WANG, Xinyu CAO, Qidong CHEN. Roadside traffic object detection model and deployment for vehicle-road collaboration [J]. Journal of Computer Applications, 2025, 45(3): 1016-1024. |
| [6] | Qiurun HE, Jie HU, Bo PENG, Tianyuan LI. Fabric defect detection algorithm based on context information and multi-scale feature fusion [J]. Journal of Computer Applications, 2025, 45(2): 640-646. |
| [7] | Jiayang GUI, Shunji WANG, Zhengkang ZHOU, Jiashan TANG. Tunnel foreign object detection algorithm based on improved YOLOv8n [J]. Journal of Computer Applications, 2025, 45(2): 655-661. |
| [8] | Songsen YU, Zhifan LIN, Guopeng XUE, Jianyu XU. Lightweight large-format tile defect detection algorithm based on improved YOLOv8 [J]. Journal of Computer Applications, 2025, 45(2): 647-654. |
| [9] | Yali XUE, Zhongmin XU, Shihao LIU. Gravity data denoising method based on multilevel wavelet residual network [J]. Journal of Computer Applications, 2025, 45(10): 3336-3341. |
| [10] | Jiahui ZHANG, Xiaoming LI, Jiaxiang ZHANG. Pavement defect detection algorithm with enhanced morphological perception [J]. Journal of Computer Applications, 2025, 45(10): 3342-3352. |
| [11] | Shang LIU, Yuwei ZHOU, Rao DAI, Linfang DONG, Meng LIU. Small target detection algorithm in remote sensing images integrating attention and contextual information [J]. Journal of Computer Applications, 2025, 45(1): 292-300. |
| [12] | Boran YANG, Suzhen LIN, Dawei LI, Xiaofei LU, Chenhui CUI. Infrared small target detection method based on information compensation [J]. Journal of Computer Applications, 2025, 45(1): 284-291. |
| [13] | Yexin PAN, Zhe YANG. Optimization model for small object detection based on multi-level feature bidirectional fusion [J]. Journal of Computer Applications, 2024, 44(9): 2871-2877. |
| [14] | Yeheng LI, Guangsheng LUO, Qianmin SU. Logo detection algorithm based on improved YOLOv5 [J]. Journal of Computer Applications, 2024, 44(8): 2580-2587. |
| [15] | Wudan LONG, Bo PENG, Jie HU, Ying SHEN, Danni DING. Road damage detection algorithm based on enhanced feature extraction [J]. Journal of Computer Applications, 2024, 44(7): 2264-2270. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||