1 |
WANG X, YIN W, KONG T, et al. Task-aware monocular depth estimation for 3D object detection [J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 12257-12264.
|
2 |
LI P, CHEN X, SHEN S. Stereo R-CNN based 3D object detection for autonomous driving [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 7636-7644.
|
3 |
曹杰程,陶重犇.基于Stereo RCNN的锚引导3D目标检测算法[J].仪器仪表学报, 2021, 42(12): 191-201.
|
|
CAO J C, TAO C B. An anchor-guided 3D object detection algorithm based on stereo RCNN [J]. Chinese Journal of Scientific Instrument, 2021, 42(12): 191-201.
|
4 |
CHARLES R Q, SU H, MO K, et al. PointNet: deep learning on point sets for 3D classification and segmentation [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 77-85.
|
5 |
刘永刚,于丰宁,章新杰,等.基于激光点云与图像融合的3D目标检测研究[J].机械工程学报, 2022, 58(24): 289-299.
|
|
LIU Y G, YU F N, ZHANG X J, et al. Research on 3D object detection based on laser point cloud and image fusion [J]. Journal of Mechanical Engineering, 2022, 58(24): 289-299.
|
6 |
崔振东,李宗民,杨树林,等.基于语义分割引导的三维目标检测[J]. 图学学报, 2022, 43(6): 1134-1142.
|
|
CUI Z D, LI Z M, YANG S L, et al. 3D object detection based on semantic segmentation guidance [J]. Journal of Graphics, 2022, 43(6): 1134-1142.
|
7 |
ZHANG Y, HU Q, XU G, et al. Not all points are equal: learning highly efficient point-based detectors for 3D LiDAR point clouds [C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 18931-18940.
|
8 |
ZHOU Y, TUZEL O. VoxelNet: End-to-end learning for point cloud based 3D object detection [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 4490-4499.
|
9 |
HE Q, WANG Z, ZENG H, et al. SVGA-Net: Sparse voxel-graph attention network for 3D object detection from point clouds [J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 36(1): 870-878.
|
10 |
KU J, MOZIFIAN M, LEE J, et al. Joint 3D proposal generation and object detection from view aggregation [C]// Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE, 2018: 1-8.
|
11 |
LIN T-Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 936-944.
|
12 |
CHARLES R Q, LIU W, WU C, et al. Frustum PointNets for 3D object detection from RGB-D data [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 918-927.
|
13 |
XU D, ANGUELOV D, JAIN A. PointFusion: deep sensor fusion for 3D bounding box estimation [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 244-253.
|
14 |
LIU Z, ZHAO X, HUANG T T, et al. TANet: robust 3D object detection from point clouds with triple attention [J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 11677-11684.
|
15 |
WANG L, SONG Z, ZHANG X, et al. SAT-GCN: self-attention graph convolutional network-based 3D object detection for autonomous driving [J]. Knowledge-Based Systems, 2023, 259: 110080.
|
16 |
WANG Y, SUN Y, LIU Z, et al. Dynamic graph CNN for learning on point clouds [J]. ACM Transactions on Graphics, 2018, 38(5): 146.
|
17 |
GEIGER A, LENZ P, STILLER C, et al. Vision meets robotics: the KITTI dataset [J]. International Journal of Robotics Research, 2013, 32(11): 1231-1237.
|
18 |
WANG Q, WU B, ZHU P, et al. ECA-Net: efficient channel attention for deep convolutional neural networks [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 11531-11539.
|
19 |
WOO S, PARK J, LEE J-Y, et al. CBAM: convolutional block attention module [C]// Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 3-19.
|