Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (8): 2630-2636.DOI: 10.11772/j.issn.1001-9081.2024111579
• Cyber security • Previous Articles Next Articles
Di WANG1,2()
Received:
2024-11-07
Revised:
2025-02-19
Accepted:
2025-02-21
Online:
2025-02-26
Published:
2025-08-10
Contact:
Di WANG
通讯作者:
王迪
CLC Number:
Di WANG. P-Dledger: blockchain edge node security architecture[J]. Journal of Computer Applications, 2025, 45(8): 2630-2636.
王迪. 区块链边缘节点安全架构P-Dledger[J]. 《计算机应用》唯一官方网站, 2025, 45(8): 2630-2636.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024111579
区块链架构 | 传统节点安全需求 | 边缘节点安全需求 |
---|---|---|
应用层 | 无故障 | 防止恶意代码注入 |
合约层 | 避免智能合约漏洞 | 执行过程安全 |
共识层 | 一致性、有效性、活性 | 低计算及网络开销 |
网络层 | 数据可信传递 | 防止身份伪造 |
数据层 | 保密性、完整性、可用性 | 防止物理手段的数据窃取 |
Tab. 1 Comparison of security requirements between traditional nodes and edge nodes
区块链架构 | 传统节点安全需求 | 边缘节点安全需求 |
---|---|---|
应用层 | 无故障 | 防止恶意代码注入 |
合约层 | 避免智能合约漏洞 | 执行过程安全 |
共识层 | 一致性、有效性、活性 | 低计算及网络开销 |
网络层 | 数据可信传递 | 防止身份伪造 |
数据层 | 保密性、完整性、可用性 | 防止物理手段的数据窃取 |
存取位置 | 读取密钥耗时 | 存储密钥耗时 |
---|---|---|
REE | 1.17 | 70.58 |
TEE | 76.67 | 152.67 |
Tab. 2 Comparison of key access time between REE and TEE
存取位置 | 读取密钥耗时 | 存储密钥耗时 |
---|---|---|
REE | 1.17 | 70.58 |
TEE | 76.67 | 152.67 |
[1] | HEILMAN E, KENDLER A, ZOHAR A, et al. Eclipse attacks on bitcoin’s peer-to-peer network[C]// Proceedings of the 24th USENIX Security Symposium. Berkeley: USENIX Association, 2015: 129-144. |
[2] | LAMPORT L, SHOSTAK R, PEASE M. The Byzantine generals problem[J]. ACM Transactions on Programming Languages and Systems, 1982, 4(3): 382-401. |
[3] | NAKAMOTO S. Bitcoin: a peer-to-peer electronic cash system[EB/OL]. [2024-07-13].. |
[4] | Index Hashrate. Hashrate Index’s homepage[EB/OL]. [2024-07-13].. |
[5] | CASTRO M, LISKOV B. Practical Byzantine fault tolerance and proactive recovery[J]. ACM Transactions on Computer Systems, 2002, 20(4): 398-461. |
[6] | 冯了了,丁滟,刘坤林,等. 区块链BFT共识算法研究进展[J]. 计算机科学, 2022, 49(4):329-339. |
FENG L L, DING Y, LIU K L, et al. Research advance on BFT consensus algorithms[J]. Computer Science, 2022, 49(4): 329-339. | |
[7] | 佟兴,张召,金澈清,等. 面向端边云协同架构的区块链技术综述[J]. 计算机学报, 2021, 44(12):2345-2366. |
TONG X, ZHANG Z, JIN C Q, et al. Blockchain for end-edge-cloud architecture: a survey[J]. Chinese Journal of Computers, 2021, 44(12): 2345-2366. | |
[8] | DOUCEUR J R. The Sybil attack[C]// Proceedings of the 2002 International Workshop on Peer-to-Peer Systems, LNCS 2429. Berlin: Springer, 2002: 251-260. |
[9] | LUU L, CHU D H, OLICKEL H, et al. Making smart contracts smarter[C]// Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2016: 254-269. |
[10] | LAMPORT L. How to make a multiprocessor computer that correctly executes multiprocess programs[J]. IEEE Transactions on Computers, 1979, C-28(9): 690-691. |
[11] | 韩璇,袁勇,王飞跃. 区块链安全问题:研究现状与展望[J]. 自动化学报, 2019, 45(1):206-225. |
HAN X, YUAN Y, WANG F Y. Security problems on blockchain: the state of the art and future trends[J]. Acta Automatica Sinica, 2019, 45(1): 206-225. | |
[12] | 朱立,俞欢,詹士潇,等. 高性能联盟区块链技术研究[J]. 软件学报, 2019, 30(6):1577-1593. |
ZHU L, YU H, ZHAN S X, et al. Research on high-performance consortium blockchain technology[J]. Journal of Software, 2019, 30(6): 1577-1593. | |
[13] | TANG S, WANG Z, JIANG J, et al. Improved PBFT algorithm for high-frequency trading scenarios of alliance blockchain[J]. Scientific Reports, 2022, 12: No.4426. |
[14] | KOKORIS-KOGIAS E, JOVANOVIC P, GAILLY N, et al. Enhancing bitcoin security and performance with strong consistency via collective signing[C]// Proceedings of the 25th USENIX Security Symposium. Berkeley: USENIX Association, 2016: 279-296. |
[15] | 夏清,窦文生,郭凯文,等. 区块链共识协议综述[J]. 软件学报, 2021, 32(2):277-299. |
XIA Q, DOU W S, GUO K W, et al. Survey on blockchain consensus protocol[J]. Journal of Software, 2021, 32(2): 277-299. | |
[16] | XU G, BAI H, XING J, et al. SG-PBFT: a secure and highly efficient distributed blockchain PBFT consensus algorithm for intelligent Internet of vehicles[J]. Journal of Parallel and Distributed Computing, 2022, 164: 1-11. |
[17] | 张锋巍,周雷,张一鸣,等. 可信执行环境:现状与展望[J]. 计算机研究与发展, 2024, 61(1):243-260. |
ZHANG F W, ZHOU L, ZHANG Y M, et al. Trusted execution environment: state-of-the-art and future directions[J]. Journal of Computer Research and Development, 2024, 61(1): 243-260. | |
[18] | VERONESE G S, CORREIA M, BESSANI A N, et al. Efficient Byzantine fault-tolerance[J]. IEEE Transactions on Computers, 2013, 62(1): 16-30. |
[19] | FU X, WANG H M, SHI P C, et al. TEEgraph: trusted execution environment and directed acyclic graph-based consensus algorithm for IoT blockchains[J]. SCIENCE CHINA Information Sciences, 2022, 65(3): No.139104. |
[20] | MÜLLER C, BRANDENBURGER M, CACHIN C, et al. TZ4Fabric: executing smart contracts with ARM TrustZone[C]// Proceedings of the 2020 International Symposium on Reliable Distributed Systems. Piscataway: IEEE, 2020: 31-40. |
[21] | CHENG R, ZHANG F, KOS J, et al. Ekiden: a platform for confidentiality-preserving, trustworthy, and performant smart contracts[C]// Proceedings of the 2019 IEEE European Symposium on Security and Privacy. Piscataway: IEEE, 2019: 185-200. |
[22] | RUSSINOVICH M, ASHTON E, AVANESSIANS C, et al. CCF: a framework for building confidential verifiable replicated services[EB/OL]. [2024-07-30].. |
[23] | XIE H, ZHENG J, ZHANG Z, et al. TEDA: a trusted execution environment-and-blockchain-based data protection architecture for Internet of Things[J]. Computing, 2024, 106(3): 939-960. |
[24] | 杨保绚,董攀,张利军,等. 基于TrustZone的安全应用性能优化[J]. 计算机工程与科学, 2020, 42(12):2141-2150. |
YANG B X, DONG P, ZHANG L J, et al. Performance optimization of secure application based on TrustZone[J]. Computer Engineering and Science, 2020, 42(12): 2141-2150. | |
[25] | 杨霞,雷林,吴新勇,等. 采用数字签名技术的可信启动方法研究[J]. 电子科技大学学报, 2016, 45(3):448-452. |
YANG X, LEI L, WU X Y, et al. Research on the trusted-boot technology using digital signature technique[J]. Journal of University of Electronic Science and Technology of China, 2016, 45(3): 448-452. | |
[26] | 郑显义,李文,孟丹. TrustZone技术的分析与研究[J]. 计算机学报, 2016, 39(9):1912-1928. |
ZHENG X Y, LI W, MENG D. Analysis and research on TrustZone technology[J]. Chinese Journal of Computers, 2016, 39(9): 1912-1928. | |
[27] | 王迪,惠怀海,罗艺,等. 一种基于TEE的区块链智能合约架构设计[J]. 通信技术, 2023, 56(3):351-356. |
WANG D, HUI H H, LUO Y, et al. A TEE-based blockchain smart contract architecture design[J]. Communications Technology, 2023, 56(3): 351-356. | |
[28] | 靳世雄,张潇丹,葛敬国,等. 区块链共识算法研究综述[J]. 信息安全学报, 2021, 6(2): 85-100. |
JIN S X, ZHANG X D, GE J G, et al. Overview of blockchain consensus algorithm[J]. Journal of Cyber Security, 2021, 6(2): 85-100. | |
[29] | 田国华,胡云瀚,陈晓峰. 区块链系统攻击与防御技术研究进展[J].软件学报, 2021, 32(5):1495-1525. |
TIAN G H, HU Y H, CHEN X F. Research progress on attack and defense techniques in block-chain system[J]. Journal of Software, 2021, 32(5): 1495-1525. |
[1] | Haiyang PENG, Weixing JI, Fawang LIU. Blockchain-based data notarization model for autonomous driving simulation testing [J]. Journal of Computer Applications, 2025, 45(8): 2421-2427. |
[2] | Shuo ZHANG, Guokai SUN, Yuan ZHUANG, Xiaoyu FENG, Jingzhi WANG. Dynamic detection method of eclipse attacks for blockchain node analysis [J]. Journal of Computer Applications, 2025, 45(8): 2428-2436. |
[3] | Yuxuan CHEN, Haibin ZHENG, Zhenyu GUAN, Boheng SU, Yujue WANG, Zhenwei GUO. Blockchain sharding mechanism in asynchronous network based on HoneyBadgerBFT and DAG [J]. Journal of Computer Applications, 2025, 45(7): 2092-2100. |
[4] | Li’e WANG, Caiyi LIN, Yongdong LI, Xingcheng FU, Xianxian LI. Digital content copyright protection and fair tracking scheme based on blockchain [J]. Journal of Computer Applications, 2025, 45(6): 1756-1765. |
[5] | Xin SHAO, Zigang CHEN, Xingchun YANG, Haihua ZHU, Wenjun LUO, Long CHEN, Yousheng ZHOU. Vehicular digital evidence preservation and access control based on consortium blockchain [J]. Journal of Computer Applications, 2025, 45(6): 1902-1910. |
[6] | Gaimei GAO, Miaolian DU, Chunxia LIU, Yuli YANG, Weichao DANG, Guoxia DI. Privacy protection method for consortium blockchain based on SM2 linkable ring signature [J]. Journal of Computer Applications, 2025, 45(5): 1564-1572. |
[7] | Han ZHANG, Hang YU, Jiwei ZHOU, Yunkai BAI, Lutan ZHAO. Survey on trusted execution environment towards privacy computing [J]. Journal of Computer Applications, 2025, 45(2): 467-481. |
[8] | Chunxia LIU, Hanying XU, Gaimei GAO, Weichao DANG, Zilu LI. Smart contract vulnerability detection method based on echo state network [J]. Journal of Computer Applications, 2025, 45(1): 153-161. |
[9] | Min SUN, Shihang JIAO, Chenyan WANG. Credit based committee consensus mechanism [J]. Journal of Computer Applications, 2025, 45(1): 170-177. |
[10] | Tingwei CHEN, Jiacheng ZHANG, Junlu WANG. Random validation blockchain construction for federated learning [J]. Journal of Computer Applications, 2024, 44(9): 2770-2776. |
[11] | Xiaoling SUN, Danhui WANG, Shanshan LI. Dynamic ciphertext sorting and retrieval scheme based on blockchain [J]. Journal of Computer Applications, 2024, 44(8): 2500-2505. |
[12] | He HUANG, Yu JIN. Cloud data auditing scheme based on voting and Ethereum smart contracts [J]. Journal of Computer Applications, 2024, 44(7): 2093-2101. |
[13] | Baoyan SONG, Junxiang DING, Junlu WANG, Haolin ZHANG. Consortium blockchain modification method based on chameleon hash and verifiable secret sharing [J]. Journal of Computer Applications, 2024, 44(7): 2087-2092. |
[14] | Jiao LI, Xiushan ZHANG, Yuanhang NING. Blockchain sharding method for reducing cross-shard transaction proportion [J]. Journal of Computer Applications, 2024, 44(6): 1889-1896. |
[15] | Lipeng ZHAO, Bing GUO. Blockchain consensus improvement algorithm based on BDLS [J]. Journal of Computer Applications, 2024, 44(4): 1139-1147. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||