[1] HAWKINS D M. Identification of outliers[M]. London:Chapman and Hall, 1980:1-2. [2] DOMINGUES R, FILIPPONE M, MICHIARDI P, et al. A comparative evaluation of outlier detection algorithms:experiments and analyses[J]. Pattern Recognition, 2018, 74:406-421. [3] WANG Y, WONG J, MINER A. Anomaly intrusion detection using one class SVM[C]//Proceedings from the Fifth Annual IEEE SMC Information Assurance Workshop. Piscataway, NJ:IEEE, 2004:358-364. [4] SCHOLKOPF B, WILLIAMSON R, SMOLA A, et al. Support vector method for novelty detection[J]. Advances in Neural Information Processing Systems, 2000, 12(3):582-588. [5] 张晓惠, 林柏钢. 基于特征选择和多分类支持向量机的异常检测[J]. 通信学报, 2009, 30(增刊1):68-73. (ZHANG X H, LIN B G. Anomaly detection based on feature selection and multi-class support vector machines[J]. Journal on Communications, 2009, 30(S1):68-73. [6] ERFANI S M, RAJASEGARAR S, KARUNASEKERA S, et al. High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning[J]. Pattern Recognition, 2016, 58:121-134. [7] PAULA E L, LADEIRA M, CARVALHO R N, et al. Deep learning anomaly detection as support fraud investigation in brazilian exports and anti-money laundering[C]//Proceedings of the 2016 IEEE International Conference on Machine Learning and Applications. Piscataway, NJ:IEEE, 2016:954-960. [8] LIU F T, TING K M, ZHOU Z H. Isolation-based anomaly detection[J]. ACM Transactions on Knowledge Discovery from Data, 2012, 6(1):1-39. [9] SHEN Y, LIU H, WANG Y, et al. A novel isolation-based outlier detection method[C]//PRICAI 2016:Proceedings of the 2016 Pacific Rim International Conference on Artificial Intelligence. Berlin:Springer, 2016:446-456. [10] 邱一卉, 林成德. 基于随机森林方法的异常样本检测方法[J]. 福建工程学院学报, 2007, 5(4):392-396. (QIU Y H, LIN C D. Outlier detection based on random forest[J]. Journal of Fujian University of Technology, 2007, 5(4):392-396.) [11] ZHOU Q F, ZHOU H, NING Y P, et al. Two approaches for novelty detection using random forest[J]. Expert Systems with Applications, 2015, 42(10):4840-4850. [12] 李贞贵.随机森林改进的若干研究[D]. 厦门:厦门大学, 2013:28-30. (LI Z G. Several research on random forest improve[D]. Xiamen:Xiamen University, 2013:28-30.) [13] 胡淼, 王开军, 李海超, 等.模糊树节点的随机森林与异常点检测[J]. 南京大学学报(自然科学版), 2018, 54(6):1141-1151. (HU M, WANG K J, LI H C, et al. A random forest algorithm based on fuzzy tree node for anomaly detection[J]. Journal of Nanjing University (Natural Science), 2018, 54(6):1141-1151.) [14] BREIMAN L, FRIEDMAN J, OLSHEN R, et al. Classification and Regression Trees[M]. New York:Champman & Hall,1984:18-55. [15] 李航. 统计学习方法[M]. 北京:清华大学出版社, 2012:67-71. (LI H. Statistical Learning Method[M]. Beijing:Tsinghua University Press, 2012:67-71.) [16] BREIMAN L. Bagging predictors[J]. Machine Learning, 1996, 24(2):123-140. [17] BREIMAN L. Random forest[J]. Machine Learning, 2001, 45(1):5-32. [18] 周志华.机器学习[M]. 北京:清华大学出版社, 2016:179-181. (ZHOU Z H. Machine Learning[M]. Beijing:Tsinghua University Press, 2016:179-181.) [19] BLAKE C L, M C J. UCI repository of machine learning databases[EB/OL].[2018-05-10]. http://mlearn.ics.uci.edu/MLRepository.html. [20] CHANG C C, LIN C J. LIBSVM:a library for support vector machines[EB/OL].[2018-05-10]. http://www.csie.ntu.edu.tw/~cjlin/libsvm/. [21] LIU F T, TING K M, ZHOU Z H. Isolation-based anomaly detection[EB/OL].[2018-05-10]. http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html. [22] HAN J W, KAMBER M. 数据挖掘:概念与技术[M]. 范明, 孟小峰, 译.3版.北京:机械工业出版社, 2012:236-240. (HAN J W, KAMBER M. Data Mining:Concepts and Techniques[M]. FAN M, MENG X F, translated. 3rd ed. Beijing:China Machine Press, 2012:236-240.) |