[1] WANG X Y,ZHANG X J,YANG H Y, et al. A pixel-based color image segmentation using support vector machine and fuzzy C-means[J]. Neural Networks,2012,33:148-159. [2] CHEN B,LI Y,CAI J L. Noisy image segmentation based on nonlinear diffusion equation model[J]. Applied Mathematical Modelling,2012,36(3):1197-1208. [3] GUO F F, WANG X X, SHEN J. Adaptive fuzzy C-means algorithm based on local noise detecting for image segmentation[J]. IET Image Processing,2016,10(4):272-279. [4] MEENA PRAKASH R,SHANTHA SELVA KUMARI R. Spatial fuzzy C means and expectation maximization algorithms with bias correction for segmentation of MR brain images[J]. Journal of Medical Systems,2016,41(1):No. 15. [5] VERMA H, AGRAWAL R K, SHARAN A. An improved intuitionistic fuzzy C-means clustering algorithm incorporation local information for brain image segmentation[J]. Applied Soft Computing,2016,46:543-557. [6] 马英然, 彭延军. 一种融合曲线演化与模糊C均值聚类算法的快速图像分割模型[J]. 电子与信息学报,2017,39(6):1379-1386. (MA Y R,PENG Y J. Fast image segmentation model combined with fuzzy C-means method and curve evolution[J]. Journal of Electronics and Information Technology,2017,39(6):1379-1386.) [7] 魏光杏, 周献中, 卜锡滨. 基于模糊C均值与人工蜂群优化的灰度图像分割[J]. 兰州大学学报(自然科学版),2019,55(2):250-254,260. (WEI G X,ZHOU X Z,PU X B. Gray image segmentation based on fuzzy C-means and artificial bee colony optimization[J]. Journal of Lanzhou University (Natural Sciences),2019,55(2):250-254,260.) [8] LAISHRAM R,KUMAR W K,GUPTA A,et al. A novel MRI brain edge detection using PSOFCM segmentation and canny algorithm[C]//Proceedings of the 2014 International Conference on Electronic Systems, Signal Processing and Computing Technologies. Piscataway:IEEE,2014:398-401. [9] 陆振宇, 邱雨楠, 傅佑, 等. 基于小波变换和粒子群改进的FCM图像分割方法[J]. 现代电子技术,2019,42(5):57-60,65. (LU Z Y,QIU Y N,FU Y,et al. An improved FCM image segmentation method based on wavelet transform and particle swarm optimization[J]. Modern Electronics Technique,2019,42(5):57-60,65.) [10] 吴祈宗. 运筹学与最优化方法[M]. 北京:机械工业出版社, 2003:95-97. (WU Q Z. Operational Research and Optimization Methods[M]. Beijing:China Machine Press,2003:95-97.) [11] 吴诗婳, 吴一全, 周建江. 直线截距直方图城区遥感图像多阈值分割[J]. 智能系统学报,2018,13(2):227-235. (WU S H, WU Y Q,ZHOU J J. Multi-level thresholding for remote sensing image of urban area based on line intercept histogram[J]. CAAI Transactions on Intelligent Systems,2018,13(2):227-235.) [12] 王卓, 张长胜, 钱俊兵. 边缘细分的动态参数模糊C-均值图像分割算法[J]. 南京理工大学学报,2020,44(3):288-295. (WANG Z,ZHANG C S,QIAN J B. Fuzzy C-mean image segmentation algorithm with dynamic parameters and edge subdivision[J]. Journal of Nanjing University of Science and Technology,2020,44(3):288-295.) [13] 兰蓉, 林洋. 抑制式非局部空间直觉模糊C-均值图像分割算法[J]. 电子与信息学报,2019,41(6):1472-1479. (LAN R,LIN Y. Suppressed non-local spatial intuitionistic fuzzy C-means image segmentation algorithm[J]. Journal of Electronics and Information Technology,2019,41(6):1472-1479.) [14] MALLAT S G. A theory for multiresolution signal decomposition:the wavelet representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1989,11(7):674-693. [15] DONOHO D L. De-noising by soft-thresholding[J]. IEEE Transactions on Information Theory,1995,41(3):613-627. [16] 林杰, 付梦印, 李道平. 自适应小波阈值去噪算法及在图像处理中的应用[J]. 兵工学报,2011,32(7):896-900. (LIN J,FU M Y,LI D P. Self-adaptive wavelet threshold de-noising method and its application in image processing[J]. Acta Armamentarii, 2011,32(7):896-900.) [17] 喻金平, 郑杰, 梅宏标. 基于改进人工蜂群算法的K均值聚类算法[J]. 计算机应用,2014,34(4):1065-1069,1088. (YU J P, ZHENG J,MEI H B. K-means clustering algorithm based on improved artificial bee colony algorithm[J]. Journal of Computer Applications,2014,34(4):1065-1069,1088.) |