[1] XU J, YU X, PEI W, et al. A remote sensing image fusion method based on feedback sparse component analysis[J]. Computers & Geosciences, 2015, 85(B):115-123. [2] HE H, LIANG T, HU D, et al. Remote sensing clustering analysis based on object-based interval modeling[J]. Computers & Geosciences, 2016, 94:131-139. [3] 贺辉,余先川,胡丹. 模糊不确定性建模分析及应用[M].北京:科学出版社,2016:1-20. (HE H, YU X C, HU D. Analysis and Application of Fuzzy Uncertainty Modeling[M]. Beijing:Science Press, 2016:1-20.) [4] 王鑫,李可,徐明君,等.改进的基于深度学习的遥感图像分类算法[J].计算机应用,2019,39(2):382-387.(WANG X, LI K, XU M J, et al. Improved remote sensing image classification algorithm based on deep learning[J]. Journal of Computer Applications, 2019, 39(2):382-387.) [5] XU J, NI M, ZHANG Y, et al. Remote sensing image fusion method based on multiscale morphological component analysis[J]. Journal of Applied Remote Sensing, 2016, 10(2):025018. [6] 龚建雅,钟燕飞.光学遥感影像智能化处理研究进展[J].遥感学报,2016,20(5):733-747.(GONG J Y, ZHONG Y F. Survey of intelligent optical remote sensing image processing[J]. Journal of Remote Sensing, 2016, 20(5):733-747.) [7] PERSELLO C, BRUZZONE L. Active and semisupervised learning for the classification of remote sensing image[J]. IEEE Transactions on Geoscience & Remote Sensing, 2014, 52(11):6937-6956. [8] DAI X, WU X, WANG B, et al. Semi-supervised scene classification for remote sensing images:a method based on convolutional neural networks and ensemble learning[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(6):869-873. [9] 张兵.高光谱图像处理与信息提取前沿[J].遥感学报,2016,20(5):1062-1090. (ZHANG B. Advancement of hyperspectral image processing and information extraction[J]. Journal of Remote Sensing, 2016, 20(5):1062-1090.) [10] 王玉龙,蒲军,赵江华,等.基于生成对抗网络的地面新增建筑检测[J].计算机应用,2019,39(5):1518-1522. (WANG Y L, PU J, ZHAO J H, et al. Detection of new ground building based on generative adversarial network[J]. Journal of Computer Applications, 2019, 39(5):1518-1522.) [11] ZADEH L A. Fuzzy set[J]. Information and Control, 1965, 8:338-353. [12] 余先川,贺辉,胡丹,等.基于区间值模糊C均值算法的土地覆盖分类[J].中国科学:地球科学,2014,44(9):2022-2029.(YU X C, HE H, HU D, et al. Land cover classification of remote sensing imagery based on interval-valued data fuzzy C-means algorithm[J]. Science China:Earth Sciences, 2014, 44(9):2022-2029.) [13] LIU L, LI C, LEI Y. A new fuzzy clustering method with neighborhood distance constraint for volcanic ash cloud[J]. IEEE Journals & Magazines. 2016, 4:7005-7013. [14] CHOUBIN B, SOLAIMANI K, HABIBNEJAD R M, et al. Watershed classification by remote sensing indices:a fuzzy C-means clustering approach[J]. Journal of Mountain Science, 2017, 14(10):2053-2063. [15] HWANG C, RHEE C. Uncertain fuzzy clustering:interval type-2 fuzzy approach to c-means[J]. IEEE Transactions on Fuzzy Systems, 2007, 15(1):107-120. [16] MEMON K H. A histogram approach for determining fuzzifier values of interval type-2 fuzzy C-means[J]. Expert Systems with Applications, 2018, 91:27-35. [17] HUO H, GUO J, LI Z, et al. Remote sensing of spatiotemporal changes in wetland geomorphology based on type 2 fuzzy sets:a case study of Beidahuang Wetland from 1975 to 2015[J]. Remote Sensing, 2017, 9(7):683. [18] YU X, ZHOU W, HE H. A method of remote sensing image auto classification based on interval type-2 fuzzy C-means[C]//Proceedings of the 2014 IEEE Proceedings of the International Conference on Fuzzy Systems. Piscataway:IEEE, 2014:223-228. [19] GUO J, HUO H. An enhanced IT2FCM* algorithm integrating spectral indices and spatial information for multi-spectral remote sensing image clustering[J]. Remote Sensing, 2017, 9(9):960. [20] STUTZ C, RUNKLER T A. Classification and prediction of road traffic using application-specific fuzzy clustering[J]. IEEE Transactions on Fuzzy Systems, 2002, 10(3):297-308. [21] ZADEH L A. The concept of a linguistic variable and its application to approximate reasoning-I[J]. Information Sciences, 1975, 8(1):199-249. [22] LIANG Q, MENDEL J M. Interval type-2 fuzzy logic systems:theory and design[J]. IEEE Transactions on Fuzzy Systems, 2000, 8(5):534-550. [23] WU D R, MENDEL J M. Aggregation using the linguistic weighted average and interval type-2 fuzzy sets[J]. IEEE Transactions on Fuzzy Systems, 2007, 15(6):1145-1161. [24] MENDEL J M. Type-2 fuzzy sets and systems:an overview[J]. IEEE Computational Intelligence Magazine, 2007, 2(1):20-29. [25] OUARDA A. Images segmentation based on interval type-2 fuzzy C-means[C]//Proceedings of the 2015 SAI Intelligent Systems Conference. Piscataway:IEEE, 2015:773-781. [26] 贺辉,胡丹,余先川.基于自适应区间二型模糊聚类的遥感土地覆盖自动分类[J].地球物理学报,2016,59(6):1983-1993.(HE H, HU D, YU X C. Land cover classification based on adaptive interval type-2 fuzzy clustering[J]. Chinese Journal of Geophysics, 2016, 59(6):1983-1993.) [27] HE H, XING H, HU D, et al. Novel fuzzy uncertainty modeling for land cover classification based on clustering analysis[J]. Science China-Earth Science, 2019, 62(2):438-450. [28] ZHU X. Semi-supervised learning with graphs[D]. Pittsburgh:Carnegie Mellon University, 2005:1-4. [29] 王君言,张春梅,张云斌,等.基于DL1图和KNN图叠加图的高光谱图像半监督分类算法[J].中国科学:信息科学,2017,47(12):1662-1673. (WANG J Y, ZHANG C M, ZHANG Y B, et al. Semi-supervised classification algorithm of hyperspectral image based on DL1 graph and KNN superposition graph[J]. SCIENTIA SINICA Informationis, 2017, 47(12):1662-1673.) [30] BOUCHACHIA A, PEDRYCZ W. Data clustering with partial supervision[J]. Data Mining and Knowledge Discovery, 2006, 2(1):47-78. [31] PEDRYCZ W. Algorithms of fuzzy clustering with partial supervision[J]. Pattern Recognition, 1985, 3:13-20. [32] PEDRYCZ W, WALETZKY J. Fuzzy clustering with partial supervision[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1997, 27(5):787-795. [33] PEDRYCZ W, WALETZKY J. Neural-network front ends in unsupervised learning[J]. IEEE Transactions on Neural Networks, 1997, 8(2):390-401. [34] JIA D, WANG C, LEI S. Semi-supervised GDTW kernel-based fuzzy C-means algorithm for mapping vegetation dynamics in mining region using normalized difference vegetation index time series[J]. Journal of Applied Remote Sensing, 2018, 12(1):016028. [35] NGO L T, MAI D S, PEDRYCZ W. Semi-supervising interval type-2 fuzzy C-means clustering with spatial information for multi-spectral satellite image classification and change detection[J]. Computers & Geosciences, 2015, 83:1-16. [36] MAI D S, NGO L T. Semi-supervised fuzzy C-means clustering for change detection from multispectral satellite image[C]//Proceedings of the 2015 IEEE International Conference on Fuzzy Systems. Piscataway:IEEE, 2015:1-8. [37] PAL N R, BEZDEK J C. On cluster validity for the fuzzy C-mean model[J]. IEEE Transactions on Fuzzy Systems, 1995, 3(3):370-379. [38] 于剑.论模糊C均值算法的模糊指标[J].计算机学报,2003,26(8):968-973.(YU J. On fuzzy index of fuzzy C-means algorithm[J]. Chinese Journal of Computers, 2003, 26(8):968-973.) [39] SZILAGYI L, ICLANZAN D, SZILAGYI S M, et al. A generalized c-means clustering model using optimized via evolutionary computation[C]//Proceedings of the 2009 IEEE International Conference on Fuzzy Systems. Piscataway:IEEE, 2009:451-455. [40] 李洪兴.变论域自适应模糊控制器[J].中国科学E辑:技术科学, 1999,29(1):32-42. (LI H X. Variable domain adaptive fuzzy controller[J]. Science in China Series E:Technical Science, 1999, 29(1):32-42.) |