Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (10): 2983-2995.DOI: 10.11772/j.issn.1001-9081.2022111694
Special Issue: 综述; 2022 CCF中国区块链技术大会 (CCF CBCC 2022)
• Blockchain technology • Next Articles
Jiaxin WANG, Jiaqi YAN(), Qian’ang MAO
Received:
2022-11-10
Revised:
2022-12-19
Accepted:
2023-01-04
Online:
2023-02-28
Published:
2023-10-10
Contact:
Jiaqi YAN
About author:
WANG Jiaxin, born in 1999, M. S. candidate. His research interests include blockchain data analysis, blockchain supervision.Supported by:
通讯作者:
颜嘉麒
作者简介:
王佳鑫(1999—),男,江苏南通人,硕士研究生,CCF会员,主要研究方向:区块链数据分析、区块链监管基金资助:
CLC Number:
Jiaxin WANG, Jiaqi YAN, Qian’ang MAO. Overview of cryptocurrency regulatory technologies research[J]. Journal of Computer Applications, 2023, 43(10): 2983-2995.
王佳鑫, 颜嘉麒, 毛谦昂. 加密数字货币监管技术研究综述[J]. 《计算机应用》唯一官方网站, 2023, 43(10): 2983-2995.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022111694
GEC周期 | 犯罪活动 | 犯罪原因 | 犯罪方式 |
---|---|---|---|
产生阶段 | 非法集资 | ICO行业信息不对称不透明,监管程度较低, 犯罪团伙可以躲避审计追查 | 非法发售票券、非法吸收公众存款、传销等 |
金融诈骗 | 意图引诱受害者给出私人信息(如用户名、 口令或信用卡详细信息) | 网络钓鱼、庞氏骗局、委托投资类诈骗、 各类去中心化应用骗局等 | |
恶意挖矿 攻击 | 整个加密数字货币交易网络的算力大幅增加, 犯罪分子寻找提高算力的方法以获取更多利益 | 区块截留攻击、自私挖矿、攻击和占用用户终端设备的 系统资源和网络资源,利用混淆、加密等手段对抗检测 | |
兑换阶段 | 洗钱 | 虚拟币交易过程中均是匿名操作,洗钱犯罪 更不容易被发现和追踪 | 主要利用加密数字货币套现洗钱,如利用Defi、跨链交易 平台、混币平台、泰达币跑分平台、高风险交易所洗钱等 |
流通阶段 | 智能合约 犯罪 | 智能合约的履行消除第三方监管,由计算机根据 设定程序进行,具有不可逆转的自动性和执行性 特点,为犯罪提供便利 | 主要方式为非法攻击智能合约系统的漏洞或者 非法获取智能合约当事人的私钥,并从中获取数字资产等 |
诈骗 | 利用各类不法网络交易平台收割用户, 骗取受害人钱财 | 自建加密数字货币冒充交易所客服诈骗、 自制空气币或山寨币等 | |
盗窃 | 交易匿名,且加密数字货币平台交易机制易受网络攻击 | 密码盗窃、黑客入侵、漏洞攻击等 | |
勒索 | 被攻击的受害者支付赎金解密文件并重获私密数据 | 对受害者数据的加密,拒绝受害者访问自己的信息等 | |
赌博 | 区块链基于它自身的匿名性、不可篡改、可追溯等技术 优势,导致在赌博平台上更容易获取大笔非法资金 | 加密数字货币在赌博中常被作为支付结算工具和赌博 投注对象,或者利用区块链智能合约技术开发赌博应用, 或者利用区块链+游戏赌博等 | |
暗网市场 | 在暗网市场中处理交易的速度更快,支持匿名,可以 逃避监管,且交易费用较低 | 主要通过加密数字货币进行各种黑暗非法的交易活动 | |
恐怖或 极端主义 | 加密数字货币的匿名性、全球性、不可否认性、低廉的 交易费用和难以实时监测的特征,利于恐怖/极端分子 在全球范围内转移资金 | 借助社交平台、网络游戏、移动应用程序以及 外接电子设备进行加密数字货币恐怖融资 |
Tab. 1 Possible criminal activities caused by cryptocurrencies during generation, exchange and circulation stages
GEC周期 | 犯罪活动 | 犯罪原因 | 犯罪方式 |
---|---|---|---|
产生阶段 | 非法集资 | ICO行业信息不对称不透明,监管程度较低, 犯罪团伙可以躲避审计追查 | 非法发售票券、非法吸收公众存款、传销等 |
金融诈骗 | 意图引诱受害者给出私人信息(如用户名、 口令或信用卡详细信息) | 网络钓鱼、庞氏骗局、委托投资类诈骗、 各类去中心化应用骗局等 | |
恶意挖矿 攻击 | 整个加密数字货币交易网络的算力大幅增加, 犯罪分子寻找提高算力的方法以获取更多利益 | 区块截留攻击、自私挖矿、攻击和占用用户终端设备的 系统资源和网络资源,利用混淆、加密等手段对抗检测 | |
兑换阶段 | 洗钱 | 虚拟币交易过程中均是匿名操作,洗钱犯罪 更不容易被发现和追踪 | 主要利用加密数字货币套现洗钱,如利用Defi、跨链交易 平台、混币平台、泰达币跑分平台、高风险交易所洗钱等 |
流通阶段 | 智能合约 犯罪 | 智能合约的履行消除第三方监管,由计算机根据 设定程序进行,具有不可逆转的自动性和执行性 特点,为犯罪提供便利 | 主要方式为非法攻击智能合约系统的漏洞或者 非法获取智能合约当事人的私钥,并从中获取数字资产等 |
诈骗 | 利用各类不法网络交易平台收割用户, 骗取受害人钱财 | 自建加密数字货币冒充交易所客服诈骗、 自制空气币或山寨币等 | |
盗窃 | 交易匿名,且加密数字货币平台交易机制易受网络攻击 | 密码盗窃、黑客入侵、漏洞攻击等 | |
勒索 | 被攻击的受害者支付赎金解密文件并重获私密数据 | 对受害者数据的加密,拒绝受害者访问自己的信息等 | |
赌博 | 区块链基于它自身的匿名性、不可篡改、可追溯等技术 优势,导致在赌博平台上更容易获取大笔非法资金 | 加密数字货币在赌博中常被作为支付结算工具和赌博 投注对象,或者利用区块链智能合约技术开发赌博应用, 或者利用区块链+游戏赌博等 | |
暗网市场 | 在暗网市场中处理交易的速度更快,支持匿名,可以 逃避监管,且交易费用较低 | 主要通过加密数字货币进行各种黑暗非法的交易活动 | |
恐怖或 极端主义 | 加密数字货币的匿名性、全球性、不可否认性、低廉的 交易费用和难以实时监测的特征,利于恐怖/极端分子 在全球范围内转移资金 | 借助社交平台、网络游戏、移动应用程序以及 外接电子设备进行加密数字货币恐怖融资 |
模型 | 文献 | 货币 | 分类 | 训练算法 | 算法分类 |
---|---|---|---|---|---|
监督 学习 | 文献[ | 比特币 | 旁氏骗局 | BN、RF | 二分类 |
文献[ | 比特币 | 欺诈 | RF、SVM、XGBoost | 二分类 | |
文献[ | 比特币 | 非法账户 | RF、SVM、XGBoost、人工神经网络 | 二分类 | |
文献[ | 比特币 | 非法账户 | RF、XGBoost、SVM、KNN、Feed-Forward Neural Network | 二分类 | |
文献[ | 以太币 | 非法账户 | XGBoost | 二分类 | |
文献[ | 以太币 | 欺诈 | DT、RF、KNN | 二分类 | |
文献[ | 以太币 | 恶意实体 | LR、SVM、RF、AdaBoost | 二分类 | |
文献[ | 以太币 | 旁氏骗局 | RF、XGBoost、DT、SVM | 二分类 | |
文献[ | 以太币 | 钓鱼诈骗 | SVM、LightGBM | 二分类 | |
文献[ | 比特币 | 矿池、矿工、混合服务、赌博、交易所等 | SVM、RF、DT、LR、MLP、KNN | 多分类 | |
文献[ | 比特币 | 交易所、商户服务、混合、赌博、个人钱包、矿池、 勒索软件、托管钱包、骗局、暗网市场、盗窃、其他 | KNN、Classification And Regression Tree(CART)、 AdaBoost、RF、ET、梯度提升 | 多分类 | |
文献[ | 比特币 | 交易所、赌博、服务、其他 | CART、Adaboost | 多分类 | |
文献[ | 以太币 | 1 071位以太坊合约的部署者 | RF、DT、SVM | 多分类 | |
无监督 学习 | 文献[ | 比特币 | 欺诈 | K-means | — |
文献[ | 比特币 | 欺诈 | K-dimensional树(Kd-tree) | — | |
文献[ | 以太币 | 旁氏骗局 | One-Class SVM(OCSVM) | — | |
深度 学习 | 文献[ | 比特币 | 非法账户 | 图神经网络 | 二分类 |
文献[ | 比特币 | 地址分类 | 图嵌入、循环神经网络 | 多分类 | |
文献[ | 以太币 | ICO钱包、交易所、矿池、钓鱼 | 图神经网络 | 多分类 | |
文献[ | 以太币 | ICO钱包、交易所、矿池、投资者、钓鱼等 | GCN | 多分类 |
Tab. 2 Address clustering technologies based on machine learning algorithms
模型 | 文献 | 货币 | 分类 | 训练算法 | 算法分类 |
---|---|---|---|---|---|
监督 学习 | 文献[ | 比特币 | 旁氏骗局 | BN、RF | 二分类 |
文献[ | 比特币 | 欺诈 | RF、SVM、XGBoost | 二分类 | |
文献[ | 比特币 | 非法账户 | RF、SVM、XGBoost、人工神经网络 | 二分类 | |
文献[ | 比特币 | 非法账户 | RF、XGBoost、SVM、KNN、Feed-Forward Neural Network | 二分类 | |
文献[ | 以太币 | 非法账户 | XGBoost | 二分类 | |
文献[ | 以太币 | 欺诈 | DT、RF、KNN | 二分类 | |
文献[ | 以太币 | 恶意实体 | LR、SVM、RF、AdaBoost | 二分类 | |
文献[ | 以太币 | 旁氏骗局 | RF、XGBoost、DT、SVM | 二分类 | |
文献[ | 以太币 | 钓鱼诈骗 | SVM、LightGBM | 二分类 | |
文献[ | 比特币 | 矿池、矿工、混合服务、赌博、交易所等 | SVM、RF、DT、LR、MLP、KNN | 多分类 | |
文献[ | 比特币 | 交易所、商户服务、混合、赌博、个人钱包、矿池、 勒索软件、托管钱包、骗局、暗网市场、盗窃、其他 | KNN、Classification And Regression Tree(CART)、 AdaBoost、RF、ET、梯度提升 | 多分类 | |
文献[ | 比特币 | 交易所、赌博、服务、其他 | CART、Adaboost | 多分类 | |
文献[ | 以太币 | 1 071位以太坊合约的部署者 | RF、DT、SVM | 多分类 | |
无监督 学习 | 文献[ | 比特币 | 欺诈 | K-means | — |
文献[ | 比特币 | 欺诈 | K-dimensional树(Kd-tree) | — | |
文献[ | 以太币 | 旁氏骗局 | One-Class SVM(OCSVM) | — | |
深度 学习 | 文献[ | 比特币 | 非法账户 | 图神经网络 | 二分类 |
文献[ | 比特币 | 地址分类 | 图嵌入、循环神经网络 | 多分类 | |
文献[ | 以太币 | ICO钱包、交易所、矿池、钓鱼 | 图神经网络 | 多分类 | |
文献[ | 以太币 | ICO钱包、交易所、矿池、投资者、钓鱼等 | GCN | 多分类 |
GEC周期 | 平台分类 | 平台 | 功能和作用 |
---|---|---|---|
产生阶段 | ICO沙盒监管平台 | FintechSandbox | 提供数据与基础设施环境给政府和金融科技公司监管产业沙盒 |
Level-OneProject | 连接通信公司、银行和金融科技公司,并建立交互协议和沙盒系统 | ||
加密数字货币挖矿 检测系统 | DeCrypto Pro[ | 基于轻量级机器学习模型和LSTM深度神经网络的检测分析系统, 同时使用Windows性能计数器数据识别加密货币挖矿程序 | |
MineChecker[ | 基于CPU计算模拟用户输入与Web浏览器的交互,触发隐藏的挖矿脚本, 检测加密数字货币挖矿网站 | ||
兑换阶段 | 反洗钱监测平台 | MistTrack[ | 专注打击加密货币洗钱活动,具有丰富的地址标签和地址追溯功能 |
CLTracer | 基于地址关系的跨分类账跟踪平台,开发了一种交叉分类账的 组合启发式聚类算法分析地址关系,并扩展到跨链交易平台 | ||
流通阶段 | 智能合约安全分析与 漏洞检测系统 | Zeus[ | 使用抽象解释和符号模型检测智能合约漏洞,并基于形式化验证方法 分析智能合约代码的安全性 |
Slither[ | 提供理解合约代码和以太坊智能合约漏洞检测功能的分析框架,目前能够 检测重入、资金锁住等常见的漏洞 | ||
Smartcheck[ | 智能合约漏洞检测的静态分析工具,对合约源代码进行语法和词法的分析 | ||
sCompile[ | 基于关键路径的符号执行的智能合约漏洞检测工具,可以高效地自动化 识别智能合约中的关键程序路径 | ||
ReGuard[ | 基于模糊测试对以太坊智能合约进行漏洞检测的工具,主要检测重入漏洞, 支持源代码检测和字节码检测 | ||
链上数据分析 智能平台 | Nansen | 分析并标记以太坊地址的链上活动,为用户的投资提供参考 | |
Watchers | 有丰富的数据标签,支持多链分析实体行为、地址监控和聚类等 | ||
Dune Analytics | 提供大量数据分析仪表板,包含丰富的链上数据 | ||
BlockSci[ | 用于区块链分析的开源工具,采用MapReduce处理速度较快,可支持 比特币、莱特币、Zcash等 | ||
BitIodine[ | 解析区块链、地址聚类、用户分类、建立标签、可视化比特币网络等 |
Tab. 3 Mainstream cryptocurrency regulatory platforms
GEC周期 | 平台分类 | 平台 | 功能和作用 |
---|---|---|---|
产生阶段 | ICO沙盒监管平台 | FintechSandbox | 提供数据与基础设施环境给政府和金融科技公司监管产业沙盒 |
Level-OneProject | 连接通信公司、银行和金融科技公司,并建立交互协议和沙盒系统 | ||
加密数字货币挖矿 检测系统 | DeCrypto Pro[ | 基于轻量级机器学习模型和LSTM深度神经网络的检测分析系统, 同时使用Windows性能计数器数据识别加密货币挖矿程序 | |
MineChecker[ | 基于CPU计算模拟用户输入与Web浏览器的交互,触发隐藏的挖矿脚本, 检测加密数字货币挖矿网站 | ||
兑换阶段 | 反洗钱监测平台 | MistTrack[ | 专注打击加密货币洗钱活动,具有丰富的地址标签和地址追溯功能 |
CLTracer | 基于地址关系的跨分类账跟踪平台,开发了一种交叉分类账的 组合启发式聚类算法分析地址关系,并扩展到跨链交易平台 | ||
流通阶段 | 智能合约安全分析与 漏洞检测系统 | Zeus[ | 使用抽象解释和符号模型检测智能合约漏洞,并基于形式化验证方法 分析智能合约代码的安全性 |
Slither[ | 提供理解合约代码和以太坊智能合约漏洞检测功能的分析框架,目前能够 检测重入、资金锁住等常见的漏洞 | ||
Smartcheck[ | 智能合约漏洞检测的静态分析工具,对合约源代码进行语法和词法的分析 | ||
sCompile[ | 基于关键路径的符号执行的智能合约漏洞检测工具,可以高效地自动化 识别智能合约中的关键程序路径 | ||
ReGuard[ | 基于模糊测试对以太坊智能合约进行漏洞检测的工具,主要检测重入漏洞, 支持源代码检测和字节码检测 | ||
链上数据分析 智能平台 | Nansen | 分析并标记以太坊地址的链上活动,为用户的投资提供参考 | |
Watchers | 有丰富的数据标签,支持多链分析实体行为、地址监控和聚类等 | ||
Dune Analytics | 提供大量数据分析仪表板,包含丰富的链上数据 | ||
BlockSci[ | 用于区块链分析的开源工具,采用MapReduce处理速度较快,可支持 比特币、莱特币、Zcash等 | ||
BitIodine[ | 解析区块链、地址聚类、用户分类、建立标签、可视化比特币网络等 |
1 | MUKHOPADHYAY U, SKJELLUM A, HAMBOLU O, et al. A brief survey of cryptocurrency systems[C]// Proceedings of the 14th Annual Conference on Privacy, Security and Trust. Piscataway: IEEE, 2016: 745-752. 10.1109/pst.2016.7906988 |
2 | LIU Y, TSYVINSKI A, WU X. Common risk factors in cryptocurrency[J]. The Journal of Finance, 2022, 77(2): 1133-1177. 10.1111/jofi.13119 |
3 | RAMADOSS R. Blockchain technology: an overview[J]. IEEE Potentials, 2022, 41(6): 6-12. 10.1109/mpot.2022.3208395 |
4 | KHER R, TERJESEN S, LIU C. Blockchain, Bitcoin, and ICOs: a review and research agenda[J]. Small Business Economics, 2021, 56(4): 1699-1720. 10.1007/s11187-019-00286-y |
5 | BROWN S D. Cryptocurrency and criminality: the Bitcoin opportunity[J]. The Police Journal, 2016, 89(4): 327-339. 10.1177/0032258x16658927 |
6 | YOUSAF H, KAPPOS G, MEIKLEJOHN S. Tracing transactions across cryptocurrency ledgers[C]// Proceedings of the 28th USENIX Security Symposium. Berkeley: USENIX Association, 2019: 837-850. |
7 | CARVALHO C E, PIRES D A, ARTIOLI M, et al. Cryptocurrencies: technology, initiatives of banks and central banks, and regulatory challenges[J]. Economia e Sociedade, 2021, 30(2): 467-496. 10.1590/1982-3533.2021v30n2art08 |
8 | HELLANI H, SAMHAT A E, CHAMOUN M, et al. On blockchain technology: overview of Bitcoin and future insights[C]// Proceedings of the 2018 IEEE International Multidisciplinary Conference on Engineering Technology. Piscataway: IEEE, 2018: 1-8. 10.1109/imcet.2018.8603029 |
9 | OSTERN N K, RIEDEL J. Know-Your-Customer (KYC) requirements for initial coin offerings: toward designing a compliant-by-design KYC-system based on blockchain technology[J]. Business and Information Systems Engineering, 2021, 63(5): 551-567. 10.1007/s12599-020-00677-6 |
10 | LI X, JIANG P, CHEN T, et al. A survey on the security of blockchain systems[J]. Future Generation Computer Systems, 2020, 107: 841-853. 10.1016/j.future.2017.08.020 |
11 | HUANG W, MEOLI M, VISMARA S. The geography of initial coin offerings[J]. Small Business Economics, 2020, 55(1): 77-102. 10.1007/s11187-019-00135-y |
12 | HOWELL S T, NIESSNER M, YERMACK D. Initial coin offerings: financing growth with cryptocurrency token sales[J]. The Review of Financial Studies, 2020, 33(9): 3925-3974. 10.1093/rfs/hhz131 |
13 | FISCH C. Initial Coin Offerings (ICOs) to finance new ventures[J]. Journal of Business Venturing, 2019, 34(1): 1-22. 10.1016/j.jbusvent.2018.09.007 |
14 | DENG H, HUANG R H, WU Q. The regulation of initial coin offerings in China: problems, prognoses and prospects[J]. European Business Organization Law Review, 2018, 19(3): 465-502. 10.1007/s40804-018-0118-2 |
15 | MAUME P, FROMBERGER M. Regulations of initial coin offerings: reconciling US and EU securities laws[J]. Chicago Journal of International Law, 2019, 19(2): 548-585. |
16 | Chainalysis. The 2022 crypto crime report[R/OL]. [2022-02-26].. |
17 | CAMPBELL-VERDUYN M. Bitcoin, crypto-coins, and global anti-money laundering governance[J]. Crime, Law and Social Change, 2018, 69(2): 283-305. 10.1007/s10611-017-9756-5 |
18 | ADHAMI S, GIUDICI G, MARTINAZZI S. Why do businesses go crypto? an empirical analysis of initial coin offerings[J]. Journal of Economics and Business, 2018, 100: 64-75. 10.1016/j.jeconbus.2018.04.001 |
19 | CERCHIELLO P, TASCA P, TOMA A M. ICO success drivers: a textual and statistical analysis[J]. The Journal of Alternative Investments, 2019, 21(4): 13-25. 10.3905/jai.2019.21.4.013 |
20 | CAMPINO J, BROCHADO A, ROSA Á. Initial Coin Offerings (ICOs): why do they succeed?[J]. Financial Innovation, 2022, 8: No.17. 10.1186/s40854-021-00317-2 |
21 | BELLAVITIS C, FISCH C, WIKLUND J. A comprehensive review of the global development of Initial Coin Offerings (ICOs) and their regulation[J]. Journal of Business Venturing Insights, 2021, 15: No.e00213. 10.1016/j.jbvi.2020.e00213 |
22 | FU C, KOH A, GRIFFIN P. Automated theme search in ICO whitepapers[J]. The Journal of Financial Data Science, 2019, 1(4): 140-158. 10.3905/jfds.2019.1.011 |
23 | DÜRR A, GRIEBEL M, WELSCH G, et al. Predicting fraudulent initial coin offerings using information extracted from whitepapers[C/OL]// Proceedings of the 28th European Conference on Information Systems [2022-09-26].. |
24 | BIAN S, DENG Z, LI F, et al. IcoRating: a deep-learning system for scam ICO identification[EB/OL]. (2018-03-08) [2022-09-26].. |
25 | KARIMOV B, WÓJCIK P. Identification of scams in initial coin offerings with machine learning[J]. Frontiers in Artificial Intelligence, 2021, 4: No.718450. 10.3389/frai.2021.718450 |
26 | TOMA A M, CERCHIELLO P. Initial coin offerings: risk or opportunity?[J]. Frontiers in Artificial Intelligence, 2020, 3: No.18. 10.3389/frai.2020.00018 |
27 | MUÑOZ J Z I, SUÁREZ-VARELA J, BARLET-ROS P. Detecting cryptocurrency miners with NetFlow/IPFIX network measurements[C]// Proceedings of the 2019 IEEE International Symposium on Measurements and Networking. Piscataway: IEEE, 2019: 1-6. 10.1109/iwmn.2019.8804995 |
28 | VESELÝ V, ŽÁDNÍK M. How to detect cryptocurrency miners? by traffic forensics![J]. Digital Investigation, 2019, 31: No.100884. 10.1016/j.diin.2019.08.002 |
29 | CAPROLU M, RAPONI S, OLIGERI G, et al. Cryptomining makes noise: detecting cryptojacking via machine learning[J]. Computer Communications, 2021, 171: 126-139. 10.1016/j.comcom.2021.02.016 |
30 | ZAREH A, SHAHRIARI H R. BotcoinTrap: detection of Bitcoin miner botnet using host based approach[C]// Proceedings of the 15th International ISC (Iranian Society of Cryptology) Conference on Information Security and Cryptology. Piscataway: IEEE, 2018: 1-6. 10.1109/iscisc.2018.8546867 |
31 | BIAN W, MENG W, ZHANG M. MineThrottle: defending against Wasm in-browser cryptojacking[C]// Proceedings of the Web Conference 2020. Republic and Canton of Geneva: International World Wide Web Conferences Steering Committee, 2020: 3112-3118. 10.1145/3366423.3380085 |
32 | KHIRUPARAJ T P, ABISHEK MADHU V, SATHIA BHAMA P R K. Unmasking file-based cryptojacking[M]// PETER J D, FERNANDES S L, ALAVI A H. Intelligence in Big Data Technologies — Beyond the Hype: Proceedings of ICBDCC 2019. Singapore: Springer, 2021: 137-146. |
33 | NING R, WANG C, XIN C, et al. CapJack: capture in-browser crypto-jacking by deep capsule network through behavioral analysis[C]// Proceedings of the 2019 IEEE Conference on Computer Communications. Piscataway: IEEE, 2019: 1873-1881. 10.1109/infocom.2019.8737381 |
34 | KHARRAZ A, MA Z, MURLEY P, et al. Outguard: detecting in-browser covert cryptocurrency mining in the wild[C]// Proceedings of the 2019 World Wide Web Conference. Republic and Canton of Geneva: International World Wide Web Conferences Steering Committee, 2019: 840-852. 10.1145/3308558.3313665 |
35 | KONOTH R K, VINETI E, MOONSAMY V, et al. MineSweeper: an in-depth look into drive-by cryptocurrency mining and its defense[C]// Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2018: 1714-1730. 10.1145/3243734.3243858 |
36 | SALEHI A, GHAZANFARI M, FATHIAN M. Data mining techniques for anti-money laundering[J]. International Journal of Applied Engineering Research, 2017, 12(20): 10084-10094. |
37 | BELLOMARINI L, LAURENZA E, SALLINGER E. Rule-based anti-money laundering in financial intelligence units: experience and vision[C]// Proceedings of the 14th International Rule Challenge, 4th Doctoral Consortium, and 6th Industry Track @ RuleML+RR 2020. Aachen: CEUR-WS.org, 2020: 133-144. 10.1007/978-3-030-57977-7_9 |
38 | RAJPUT Q, KHAN N S, LARIK A, et al. Ontology based expert-system for suspicious transactions detection[J]. Computer and Information Science, 2014, 7(1): 103-114. 10.5539/cis.v7n1p103 |
39 | KHANUJA H K, ADANE D S. Forensic analysis for monitoring database transactions[C]// Proceedings of the 2014 International Symposium on Security in Computing and Communication, CCIS 467. Berlin: Springer, 2014: 201-210. 10.1007/978-3-662-44966-0_19 |
40 | KHAN N S, LARIK A S, RAJPUT Q, et al. A Bayesian approach for suspicious financial activity reporting[J]. International Journal of Computers and Applications, 2013, 35(4): 181-187. 10.2316/journal.202.2013.4.202-3864 |
41 | PANIGRAHI S, KUNDU A, SURAL S, et al. Credit card fraud detection: a fusion approach using Dempster-Shafer theory and Bayesian learning[J]. Information Fusion, 2009, 10(4): 354-363. 10.1016/j.inffus.2008.04.001 |
42 | BUTGEREIT L. Anti-money laundering: rule-based methods to identify funnel accounts[C]// Proceedings of the 2021 Conference on Information Communications Technology and Society. Piscataway: IEEE, 2021: 21-26. 10.1109/ictas50802.2021.9394990 |
43 | LORENZ J, SILVA M I, APARÍCIO D, et al. Machine learning methods to detect money laundering in the Bitcoin blockchain in the presence of label scarcity[C]// Proceedings of the 1st ACM International Conference on AI in Finance. New York: ACM, 2020: No.23. 10.1145/3383455.3422549 |
44 | ALARAB I, PRAKOONWIT S, NACER M I. Comparative analysis using supervised learning methods for anti-money laundering in Bitcoin[C]// Proceedings of the 5th International Conference on Machine Learning Technologies. New York: ACM, 2020: 11-17. 10.1145/3409073.3409078 |
45 | LIN Y J, WU P W, HSU C H, et al. An evaluation of Bitcoin address classification based on transaction history summarization[C]// Proceedings of the 2019 IEEE International Conference on Blockchain and Cryptocurrency. Piscataway: IEEE, 2019: 302-310. 10.1109/bloc.2019.8751410 |
46 | KUMAR A, DAS S, TYAGI V. Anti-money laundering detection using Naïve Bayes classifier[C]// Proceedings of the 2020 IEEE International Conference on Computing, Power and Communication Technologies. Piscataway: IEEE, 2020: 568-572. 10.1109/gucon48875.2020.9231226 |
47 | HARLEV M A, SUN YIN H, LANGENHELDT K C, et al. Breaking bad: de-anonymizing entity types on the Bitcoin blockchain using supervised machine learning[C]// Proceedings of the 51st Hawaii International Conference on System Sciences. Honolulu, HI: University of Hawaiʻi at Mānoa, 2018: 3497-3506. 10.24251/hicss.2018.443 |
48 | TOYODA K, OHTSUKI T, MATHIOPOULOS P T. Identification of high yielding investment programs in Bitcoin via transactions pattern analysis[C]// Proceedings of the 2017 IEEE Global Communications Conference. Piscataway: IEEE, 2017: 1-6. 10.1109/glocom.2017.8254420 |
49 | ZOLA F, EGUIMENDIA M, BRUSE J L, et al. Cascading machine learning to attack Bitcoin anonymity[C]// Proceedings of the 2019 IEEE International Conference on Blockchain. Piscataway: IEEE, 2019: 10-17. 10.1109/blockchain.2019.00011 |
50 | LEE C, MAHARJAN S, KO K, et al. Toward detecting illegal transactions on Bitcoin using machine-learning methods[C]// Proceedings of the 2019 International Conference on Blockchain and Trustworthy Systems, CCIS 1156. Singapore: Springer, 2020: 520-533. |
51 | BAEK H, OH J, KIM C Y, et al. A model for detecting cryptocurrency transactions with discernible purpose[C]// Proceedings of the 11th International Conference on Ubiquitous and Future Networks. Piscataway: IEEE, 2019: 713-717. 10.1109/icufn.2019.8806126 |
52 | VASSALLO D, VELLA V, ELLUL J. Application of gradient boosting algorithms for anti-money laundering in cryptocurrencies[J]. SN Computer Science, 2021, 2(3): No.143. 10.1007/s42979-021-00558-z |
53 | YANG Y, WU M. Supervised and unsupervised learning for fraud and money laundering detection using behavior measuring distance[C]// Proceedings of the IEEE 18th International Conference on Industrial Informatics. Piscataway: IEEE, 2020: 446-451. 10.1109/indin45582.2020.9442099 |
54 | ALARAB I, PRAKOONWIT S, NACER M I. Competence of graph convolutional networks for anti-money laundering in Bitcoin blockchain[C]// Proceedings of the 5th International Conference on Machine Learning Technologies. New York: ACM, 2020: 23-27. 10.1145/3409073.3409080 |
55 | ALARAB I, PRAKOONWIT S. Graph-based LSTM for anti-money laundering: Experimenting temporal graph convolutional network with Bitcoin data[J]. Neural Processing Letters, 2023, 55(1): 689-707. |
56 | MOHAN A, KARTHIKA P V, SANKAR P, et al. Improving anti-money laundering in Bitcoin using evolving graph convolutions and deep neural decision forest[J]. Data Technologies and Applications, 2023, 53(7): 313-329. |
57 | HASANOVA H, BAEK U J, SHIN M G, et al. A survey on blockchain cybersecurity vulnerabilities and possible countermeasures[J]. International Journal of Network Management, 2019, 29(2): No.e2060. 10.1002/nem.2060 |
58 | BHARGAVAN K, DELIGNAT-LAVAUD A, FOURNET C, et al. Formal verification of smart contracts: short paper[C]// Proceedings of the 2016 ACM Workshop on Programming Languages and Analysis for Security. New York: ACM, 2016: 91-96. 10.1145/2993600.2993611 |
59 | GRISHCHENKO I, MAFFEI M, SCHNEIDEWIND C. Foundations and tools for the static analysis of Ethereum smart contracts[C]// Proceedings of the 2018 International Conference on Computer Aided Verification LNCS 10981. Cham: Springer, 2018: 51-78. 10.1007/978-3-319-96145-3_4 |
60 | MOSSBERG M, MANZANO F, HENNENFENT E, et al. Manticore: a user-friendly symbolic execution framework for binaries and smart contracts[C]// Proceedings of the 34th IEEE/ACM International Conference on Automated Software Engineering. Piscataway: IEEE, 2019: 1186-1189. 10.1109/ase.2019.00133 |
61 | WEI Z, WANG J, SHEN X, et al. Smart contract fuzzing based on taint analysis and genetic algorithms[J]. Journal of Quantum Computing, 2020, 2(1): 11-24. 10.32604/jqc.2020.010815 |
62 | CHAN W K, JIANG B. Fuse: an architecture for smart contract fuzz testing service[C]// Proceedings of the 25th Asia-Pacific Software Engineering Conference. Piscataway: IEEE, 2018: 707-708. 10.1109/apsec.2018.00099 |
63 | CHEN W, ZHENG Z, CUI J, et al. Detecting Ponzi schemes on Ethereum: towards healthier blockchain technology[C]// Proceedings of the 2018 World Wide Web Conference. Republic and Canton of Geneva: International World Wide Web Conferences Steering Committee, 2018: 1409-1418. 10.1145/3178876.3186046 |
64 | HU T, LIU X, CHEN T, et al. Transaction-based classification and detection approach for Ethereum smart contract[J]. Information Processing and Management, 2021, 58(2): No.102462. 10.1016/j.ipm.2020.102462 |
65 | MOMENI P, WANG Y, SAMAVI R. Machine learning model for smart contracts security analysis[C]// Proceedings of the 17th International Conference on Privacy, Security and Trust. Piscataway: IEEE, 2019: 1-6. 10.1109/pst47121.2019.8949045 |
66 | XU Y, HU G, YOU L, et al. A novel machine learning-based analysis model for smart contract vulnerability[J]. Security and Communication Networks, 2021, 2021: No.5798033. 10.1155/2021/5798033 |
67 | KAPPOS G, YOUSAF H, MALLER M, et al. An empirical analysis of anonymity in Zcash[C]// Proceedings of the 27th USENIX Security Symposium. Berkeley: USENIX Association, 2018: 463-477. |
68 | REID F, HARRIGAN M. An analysis of anonymity in the Bitcoin system[M]// ALTSHULER Y, ELOVICI Y, CREMERS A B, et al. Security and Privacy in Social Networks. New York: Springer, 2013: 197-223. 10.1007/978-1-4614-4139-7_10 |
69 | ANDROULAKI E, KARAME G O, ROESCHLIN M, et al. Evaluating user privacy in Bitcoin[C]// Proceedings of the 2013 International Conference on Financial Cryptography and Data Security, LNCS 7859. Berlin: Springer, 2013: 34-51. |
70 | VICTOR F. Address clustering heuristics for Ethereum[C]// Proceedings of the 2020 International Conference on Financial Cryptography and Data Security, LNCS 12059. Cham: Springer, 2020: 617-633. |
71 | BARTOLETTI M, PES B, SERUSI S. Data mining for detecting Bitcoin Ponzi schemes[C]// Proceedings of the 2018 Crypto Valley Conference on Blockchain Technology. Piscataway: IEEE, 2018: 75-84. 10.1109/cvcbt.2018.00014 |
72 | OSTAPOWICZ M L, ŻBIKOWSKI K. Detecting fraudulent accounts on blockchain: a supervised approach[C]// Proceedings of the 2019 International Conference on Web Information Systems Engineering, LNCS 11881. Cham: Springer, 2019: 18-31. |
73 | LI Y, CAI Y, TIAN H, et al. Identifying illicit addresses in Bitcoin network[C]// Proceedings of the 2020 International Conference on Blockchain and Trustworthy Systems, CCIS 1267. Singapore: Springer, 2020: 99-111. |
74 | TOYODA K, MATHIOPOULOS P T, OHTSUKI T. A novel methodology for HYIP operators’ Bitcoin addresses identification[J]. IEEE Access, 2019, 7: 74835-74848. 10.1109/access.2019.2921087 |
75 | FARRUGIA S, ELLUL J, AZZOPARDI G. Detection of illicit accounts over the Ethereum blockchain[J]. Expert Systems with Applications, 2020, 150: No.113318. 10.1016/j.eswa.2020.113318 |
76 | IBRAHIM R F, MOHAMMAD ELIAN A, ABABNEH M. Illicit account detection in the Ethereum blockchain using machine learning[C]// Proceedings of the 2021 International Conference on Information Technology. Piscataway: IEEE, 2021: 488-493. 10.1109/icit52682.2021.9491653 |
77 | POURSAFAEI F, HAMAD G B, ZILIC Z. Detecting malicious Ethereum entities via application of machine learning classification[C]// Proceedings of the 2nd Conference on Blockchain Research and Applications for Innovative Networks and Services. Piscataway: IEEE, 2020: 120-127. 10.1109/brains49436.2020.9223304 |
78 | CHEN W, ZHENG Z, NGAI E C H, et al. Exploiting blockchain data to detect smart Ponzi schemes on Ethereum[J]. IEEE Access, 2019, 7: 37575-37586. 10.1109/access.2019.2905769 |
79 | CHEN W, GUO X, CHEN Z, et al. Phishing scam detection on Ethereum: towards financial security for blockchain ecosystem[C]// Proceedings of the 29th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2020: 4506-4512. 10.24963/ijcai.2020/621 |
80 | MICHALSKI R, DZIUBAŁTOWSKA D, MACEK P. Revealing the character of nodes in a blockchain with supervised learning[J]. IEEE Access, 2020, 8: 109639-109647. 10.1109/access.2020.3001676 |
81 | SUN YIN H H, LANGENHELDT K, HARLEV M, et al. Regulating cryptocurrencies: a supervised machine learning approach to de-anonymizing the Bitcoin blockchain[J]. Journal of Management Information Systems, 2019, 36(1): 37-73. 10.1080/07421222.2018.1550550 |
82 | LIANG J, LI L, CHEN W, et al. Targeted addresses identification for Bitcoin with network representation learning[C]// Proceedings of the 2019 IEEE International Conference on Intelligence and Security Informatics. Piscataway: IEEE, 2019: 158-160. 10.1109/isi.2019.8823249 |
83 | LINOY S, STAKHANOVA N, RAY S. De-anonymizing Ethereum blockchain smart contracts through code attribution[J]. International Journal of Network Management, 2021, 31(1): No.e2130. 10.1002/nem.2130 |
84 | MONAMO P, MARIVATE V, TWALA B. Unsupervised learning for robust Bitcoin fraud detection[C]// Proceedings of the 2016 Information Security for South Africa Conference. Piscataway: IEEE, 2016: 129-134. 10.1109/issa.2016.7802939 |
85 | MONAMO P M, MARIVATE V, TWALA B. A multifaceted approach to Bitcoin fraud detection: global and local outliers[C]// Proceedings of the 15th IEEE International Conference on Machine Learning and Applications. Piscataway: IEEE, 2016: 188-194. 10.1109/icmla.2016.0039 |
86 | TIAN H, LI Y, CAI Y, et al. Attention-based graph neural network for identifying illicit Bitcoin addresses[C]// Proceedings of the 2021 International Conference on Blockchain and Trustworthy Systems, CCIS 1490. Singapore: Springer, 2021: 147-162. |
87 | SHAO W, LI H, CHEN M, et al. Identifying Bitcoin users using deep neural network[C]// Proceedings of the 2018 International Conference on Algorithms and Architectures for Parallel Processing, LNCS 11337. Cham: Springer, 2018: 178-192. |
88 | SHEN J, ZHOU J, XIE Y, et al. Identity inference on blockchain using graph neural network[C]// Proceedings of the 2021 International Conference on Blockchain and Trustworthy Systems, CCIS 1490. Singapore: Springer, 2021: 3-17. |
89 | LIU X, TANG Z, LI P, et al. A graph learning based approach for identity inference in DApp platform blockchain[J]. IEEE Transactions on Emerging Topics in Computing, 2022, 10(1): 438-449. 10.1109/tetc.2020.3027309 |
90 | WU J, LIU J, ZHAO Y, et al. Analysis of cryptocurrency transactions from a network perspective: an overview[J]. Journal of Network and Computer Applications, 2021, 190: No.103139. 10.1016/j.jnca.2021.103139 |
91 | REMY C, RYM B, MATTHIEU L. Tracking Bitcoin users activity using community detection on a network of weak signals[C]// Proceedings of the 2017 International Conference on Complex Networks and Their Applications, SCI 689. Cham: Springer, 2018: 166-177. 10.1007/978-3-319-72150-7_14 |
92 | WU S X, WU Z, CHEN S, et al. Community detection in blockchain social networks[J]. Journal of Communications and Information Networks, 2021, 6(1): 59-71. 10.23919/jcin.2021.9387705 |
93 | ZHANG Z, ZHOU T, XIE Z. BitScope: scaling Bitcoin address deanonymization using multi-resolution clustering[EB/OL]. [2022-09-26].. 10.1016/j.displa.2022.102192 |
94 | SUN H, RUAN N, LIU H. Ethereum analysis via node clustering[C]// Proceedings of the 2019 International Conference on Network and System Security, LNCS 11928. Cham: Springer, 2019: 114-129. |
95 | PHAM T T, LEE S. Anomaly detection in the Bitcoin system — a network perspective[EB/OL]. (2017-02-24) [2022-09-26].. |
96 | PHAM T T, LEE S. Anomaly detection in Bitcoin network using unsupervised learning methods[EB/OL]. (2017-02-25) [2022-09-26].. |
97 | ZHANG R, ZHANG G, LIU L, et al. Anomaly detection in Bitcoin information networks with multi-constrained meta path[J]. Journal of Systems Architecture, 2020, 110: No.101829. 10.1016/j.sysarc.2020.101829 |
98 | WU J, LIU J, CHEN W, et al. Detecting mixing services via mining Bitcoin transaction network with hybrid motifs[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(4): 2237-2249. 10.1109/tsmc.2021.3049278 |
99 | HUANG B, LIU Z, CHEN J, et al. Behavior pattern clustering in blockchain networks[J]. Multimedia Tools and Applications, 2017, 76(19): 20099-20110. 10.1007/s11042-017-4396-4 |
100 | PATEL V, PAN L, RAJASEGARAR S. Graph deep learning based anomaly detection in Ethereum blockchain network[C]// Proceedings of the 2020 International Conference on Network and System Security, LNCS 12570. Cham: Springer, 2020: 132-148. |
101 | SCICCHITANO F, LIGUORI A, GUARASCIO M, et al. Deep autoencoder ensembles for anomaly detection on blockchain[C]// Proceedings of the 2020 International Symposium on Methodologies for Intelligent Systems, LNCS 12117. Cham: Springer, 2020: 448-456. |
102 | ZHAO C, GUAN Y. A graph-based investigation of Bitcoin transactions[C]// Proceedings of the 2015 IFIP International Conference on Digital Forensics, IFIPAICT 462. Cham: Springer, 2015: 79-95. 10.1007/978-3-319-24123-4_5 |
103 | XIE Y, JIN J, ZHANG J, et al. Temporal-amount snapshot MultiGraph for Ethereum transaction tracking[C]// Proceedings of the 2021 International Conference on Blockchain and Trustworthy Systems, CCIS 1490. Singapore: Springer, 2021: 133-146. |
104 | HUANG D Y, ALIAPOULIOS M M, LI V G, et al. Tracking ransomware end-to-end[C]// Proceedings of the 2018 IEEE Symposium on Security and Privacy. Piscataway: IEEE, 2018: 618-631. 10.1109/sp.2018.00047 |
105 | LIAO K, ZHAO Z, DOUPÉ A, et al. Behind closed doors: measurement and analysis of CryptoLocker ransoms in Bitcoin[C]// Proceedings of the 2016 APWG Symposium on Electronic Crime Research. Piscataway: IEEE, 2016: 1-13. 10.1109/ecrime.2016.7487938 |
106 | GAO B, WANG H, XIA P, et al. Tracking counterfeit cryptocurrency end-to-end[J]. Proceedings of the ACM on Measurement and Analysis of Computing Systems, 2020, 4(3): No.50. 10.1145/3428335 |
107 | 高峰,毛洪亮,吴震,等. 轻量级比特币交易溯源机制[J]. 计算机学报, 2018, 41(5): 989-1004. 10.11897/SP.J.1016.2018.00989� |
GAO F, MAO H L, WU Z, et al. Lightweight transaction tracing technology for Bitcoin[J]. Chinese Journal of Computers, 2018, 41(5): 989-1004. 10.11897/SP.J.1016.2018.00989� | |
108 | KOSHY P, KOSHY D, McDANIEL P. An analysis of anonymity in Bitcoin using P2P network traffic[C]// Proceedings of the 2014 International Conference on Financial Cryptography and Data Security LNCS 8437. Berlin: Springer, 2014: 469-485. 10.1007/978-3-662-45472-5_30 |
109 | PHILLIPS R, WILDER H. Tracing cryptocurrency scams: clustering replicated advance-fee and phishing websites[C]// Proceedings of the 2020 IEEE International Conference on Blockchain and Cryptocurrency. Piscataway: IEEE, 2020: 1-8. 10.1109/icbc48266.2020.9169433 |
110 | BIRYUKOV A, KHOVRATOVICH D, PUSTOGAROV I. Deanonymization of clients in Bitcoin P2P network[C]// Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2014: 15-29. 10.1145/2660267.2660379 |
111 | DI BATTISTA G, DI DONATO V, PATRIGNANI M, et al. Bitconeview: visualization of flows in the Bitcoin transaction graph[C]// Proceedings of the 2015 IEEE Symposium on Visualization for Cyber Security. Piscataway: IEEE, 2015: 1-8. 10.1109/vizsec.2015.7312773 |
112 | YUE X, SHU X, ZHU X, et al. BitExTract: interactive visualization for extracting Bitcoin exchange intelligence[J]. IEEE Transactions on Visualization and Computer Graphics, 2019, 25(1): 162-171. 10.1109/tvcg.2018.2864814 |
113 | HASLHOFER B, KARL R, FILTZ E. O Bitcoin where art thou? insight into large-scale transaction graphs[C]// Joint Proceedings of the Posters and Demos Track of the 12th International Conference on Semantic Systems/ 1st International Workshop on Semantic Change anf Evolving Semantics. Aachen: CEUR-WS.org, 2016: No.20. |
114 | ZHONG Z, WEI S, XU Y, et al. SilkViser: a visual explorer of blockchain-based cryptocurrency transaction data[C]// Proceedings of the 2020 IEEE Conference on Visual Analytics Science and Technology. Piscataway: IEEE, 2020: 95-106. 10.1109/vast50239.2020.00014 |
115 | McGINN D, BIRCH D, AKROYD D, et al. Visualizing dynamic Bitcoin transaction patterns[J]. Big Data, 2016, 4(2): 109-119. 10.1089/big.2015.0056 |
116 | MANI G, PASUMARTI V, BHARGAVA B, et al. DeCrypto Pro: deep learning based cryptomining malware detection using performance counters[C]// Proceedings of the 2020 IEEE International Conference on Autonomic Computing and Self-Organizing Systems. Piscataway: IEEE, 2020: 109-118. 10.1109/acsos49614.2020.00032 |
117 | HENDE J. MineChecker: a tool for detecting click-based browser cryptomining[D]. Nijmegen: Radboud University, 2019: 8-28. |
118 | ZHANG Z, YIN J, HU B, et al. CLTracer: a Cross-Ledger Tracing framework based on address relationships[J]. Computers and Security, 2022, 113: No.102558. 10.1016/j.cose.2021.102558 |
119 | KALRA S, GOEL S, DHAWAN M, et al. Zeus: analyzing safety of smart contracts[C]// Proceedings of the 2018 Network and Distributed System Security Symposium. Reston, VA: Internet Society, 2018: 1-15. 10.14722/ndss.2018.23082 |
120 | FEIST J, GREICO G, GROCE A. Slither: a static analysis framework for smart contracts[C]// Proceedings of the IEEE/ACM 2nd International Workshop on Emerging Trends in Software Engineering for Blockchain. Piscataway: IEEE, 2019: 8-15. 10.1109/wetseb.2019.00008 |
121 | TIKHOMIROV S, VOSKRESENSKAYA E, IVANITSKIY I, et al. SmartCheck: static analysis of Ethereum smart contracts[C]// Proceedings of the ACM/IEEE 1st International Workshop on Emerging Trends in Software Engineering for Blockchain. New York: ACM, 2018: 9-16. 10.1145/3194113.3194115 |
122 | CHANG J, GAO B, XIAO H, et al. sCompile: critical path identification and analysis for smart contracts[C]// Proceedings of the 2019 International Conference on Formal Engineering Methods, LNCS 11852. Cham: Springer, 2019: 286-304. |
123 | LIU C, LIU H, CAO Z, et al. ReGuard: finding reentrancy bugs in smart contracts[C]// Proceedings of the ACM/IEEE 40th International Conference on Software Engineering: Companion Proceedings. New York: ACM, 2018: 65-68. 10.1145/3183440.3183495 |
124 | KALODNER H, MÖSER M, LEE K, et al. BlockSci: design and applications of a blockchain analysis platform[C]// Proceedings of the 29th USENIX Security Symposium. Berkeley: USENIX Association, 2020: 2721-2738. |
125 | SPAGNUOLO M, MAGGI F, ZANERO S. BitIodine: extracting intelligence from the Bitcoin network[C]// Proceedings of the 2014 International Conference on Financial Cryptography and Data Security, LNCS 8437. Berlin: Springer, 2014: 457-468. |
[1] | Tingwei CHEN, Jiacheng ZHANG, Junlu WANG. Random validation blockchain construction for federated learning [J]. Journal of Computer Applications, 2024, 44(9): 2770-2776. |
[2] | Hailin XIAO, Tianyi HUANG, Qiuxiang DAI, Yuejun ZHANG, Zhongshan ZHANG. Safe reinforcement learning method for decision making of autonomous lane changing based on trajectory prediction [J]. Journal of Computer Applications, 2024, 44(9): 2958-2963. |
[3] | Xiaoling SUN, Danhui WANG, Shanshan LI. Dynamic ciphertext sorting and retrieval scheme based on blockchain [J]. Journal of Computer Applications, 2024, 44(8): 2500-2505. |
[4] | He HUANG, Yu JIN. Cloud data auditing scheme based on voting and Ethereum smart contracts [J]. Journal of Computer Applications, 2024, 44(7): 2093-2101. |
[5] | Baoyan SONG, Junxiang DING, Junlu WANG, Haolin ZHANG. Consortium blockchain modification method based on chameleon hash and verifiable secret sharing [J]. Journal of Computer Applications, 2024, 44(7): 2087-2092. |
[6] | Yaping DENG, Yingjiang LI. Review of YOLO algorithm and its applications to object detection in autonomous driving scenes [J]. Journal of Computer Applications, 2024, 44(6): 1949-1958. |
[7] | Chao GE, Jiabin ZHANG, Lei WANG, Zhixin LUN. Trajectory planning for autonomous vehicles based on model predictive control [J]. Journal of Computer Applications, 2024, 44(6): 1959-1964. |
[8] | Jiao LI, Xiushan ZHANG, Yuanhang NING. Blockchain sharding method for reducing cross-shard transaction proportion [J]. Journal of Computer Applications, 2024, 44(6): 1889-1896. |
[9] | Lipeng ZHAO, Bing GUO. Blockchain consensus improvement algorithm based on BDLS [J]. Journal of Computer Applications, 2024, 44(4): 1139-1147. |
[10] | Meihong CHEN, Lingyun YUAN, Tong XIA. Data classified and graded access control model based on master-slave multi-chain [J]. Journal of Computer Applications, 2024, 44(4): 1148-1157. |
[11] | Gaimei GAO, Jin ZHANG, Chunxia LIU, Weichao DANG, Shangwang BAI. Privacy protection scheme for crowdsourced testing tasks based on blockchain and CP-ABE policy hiding [J]. Journal of Computer Applications, 2024, 44(3): 811-818. |
[12] | Haifeng MA, Yuxia LI, Qingshui XUE, Jiahai YANG, Yongfu GAO. Attribute-based encryption scheme for blockchain privacy protection [J]. Journal of Computer Applications, 2024, 44(2): 485-489. |
[13] | Yifan WANG, Shaofu LIN, Yunjiang LI. Highway free-flow tolling method based on blockchain and zero-knowledge proof [J]. Journal of Computer Applications, 2024, 44(12): 3741-3750. |
[14] | Ziqian CHEN, Kedi NIU, Zhongyuan YAO, Xueming SI. Review of blockchain lightweight technology applied to internet of things [J]. Journal of Computer Applications, 2024, 44(12): 3688-3698. |
[15] | Tingting GAO, Zhongyuan YAO, Miao JIA, Xueming SI. Overview of on-chain and off-chain consistency protection technologies [J]. Journal of Computer Applications, 2024, 44(12): 3658-3668. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||