Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (2): 595-600.DOI: 10.11772/j.issn.1001-9081.2021122214
Special Issue: 多媒体计算与计算机仿真
• Multimedia computing and computer simulation • Previous Articles Next Articles
Qi WANG(), Hang LEI, Xupeng WANG
Received:
2022-01-04
Revised:
2022-03-02
Accepted:
2022-03-21
Online:
2022-05-16
Published:
2023-02-10
Contact:
Qi WANG
About author:
LEI Hang, born in 1960, Ph. D., professor. His research interests include embedded operating system.Supported by:
通讯作者:
王奇
作者简介:
雷航(1960—),男,四川自贡人,教授,博士,CCF会员,主要研究方向:嵌入式操作系统基金资助:
CLC Number:
Qi WANG, Hang LEI, Xupeng WANG. Deep face verification under pose interference[J]. Journal of Computer Applications, 2023, 43(2): 595-600.
王奇, 雷航, 王旭鹏. 姿态干扰下的深度人脸验证[J]. 《计算机应用》唯一官方网站, 2023, 43(2): 595-600.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021122214
对象 | 第(1)组 | 第(2)组 | 第(3)组 | |||
---|---|---|---|---|---|---|
图像1 | 图像2 | 图像1 | 图像2 | 图像1 | 图像2 | |
对象1 | 0.62 | 0.62 | 0.51 | 0.52 | 0.42 | 0.43 |
对象2 | 0.50 | 0.50 | 0.51 | 0.51 | 0.53 | 0.53 |
对象3 | 0.37 | 0.37 | 0.33 | 0.33 | 0.39 | 0.39 |
Tab.1 Head pose and L2 norm
对象 | 第(1)组 | 第(2)组 | 第(3)组 | |||
---|---|---|---|---|---|---|
图像1 | 图像2 | 图像1 | 图像2 | 图像1 | 图像2 | |
对象1 | 0.62 | 0.62 | 0.51 | 0.52 | 0.42 | 0.43 |
对象2 | 0.50 | 0.50 | 0.51 | 0.51 | 0.53 | 0.53 |
对象3 | 0.37 | 0.37 | 0.33 | 0.33 | 0.39 | 0.39 |
概率阈值 | 准确率/% | 概率阈值 | 准确率/% |
---|---|---|---|
0.1 | 73.33 | 0.6 | 89.15 |
0.2 | 79.68 | 0.7 | 83.11 |
0.3 | 83.36 | 0.8 | 78.07 |
0.4 | 86.74 | 0.9 | 76.56 |
0.5 | 88.43 |
Tab. 2 Accuracy corresponding to different threshold value
概率阈值 | 准确率/% | 概率阈值 | 准确率/% |
---|---|---|---|
0.1 | 73.33 | 0.6 | 89.15 |
0.2 | 79.68 | 0.7 | 83.11 |
0.3 | 83.36 | 0.8 | 78.07 |
0.4 | 86.74 | 0.9 | 76.56 |
0.5 | 88.43 |
准确率/% | 准确率/% | ||
---|---|---|---|
0.2 | 87.62 | 10.0 | 89.98 |
0.4 | 88.77 | 12.0 | 89.91 |
0.6 | 89.26 | 14.0 | 89.89 |
0.8 | 89.58 | 16.0 | 89.68 |
1.0 | 89.74 | 18.0 | 89.63 |
2.0 | 89.70 | 20.0 | 89.25 |
4.0 | 89.72 | 24.0 | 88.08 |
6.0 | 89.66 | 28.0 | 88.12 |
8.0 | 89.81 | 不采用超球约束特征 | 89.15 |
Tab.3 Accuracy corresponding to different scaling parameters α
准确率/% | 准确率/% | ||
---|---|---|---|
0.2 | 87.62 | 10.0 | 89.98 |
0.4 | 88.77 | 12.0 | 89.91 |
0.6 | 89.26 | 14.0 | 89.89 |
0.8 | 89.58 | 16.0 | 89.68 |
1.0 | 89.74 | 18.0 | 89.63 |
2.0 | 89.70 | 20.0 | 89.25 |
4.0 | 89.72 | 24.0 | 88.08 |
6.0 | 89.66 | 28.0 | 88.12 |
8.0 | 89.81 | 不采用超球约束特征 | 89.15 |
方法 | 输入图像 | 模型 | GPU:1080ti | |||
---|---|---|---|---|---|---|
训练 | 测试 | 图像规格 | 模型参数/106 | 准确率/% | 速度/fps | |
JanusNet[ | RGB+Depth | Depth | 4.8 | 81.4 | 202 | |
Siamese[ | Depth | Depth | variable | 1.8 | 85.3 | 604 |
L2⁃Siamese | Depth | Depth | 56.0 | 89.9 | 148 |
Tab. 4 Comparison of experimental results of different methods on Pandora dataset
方法 | 输入图像 | 模型 | GPU:1080ti | |||
---|---|---|---|---|---|---|
训练 | 测试 | 图像规格 | 模型参数/106 | 准确率/% | 速度/fps | |
JanusNet[ | RGB+Depth | Depth | 4.8 | 81.4 | 202 | |
Siamese[ | Depth | Depth | variable | 1.8 | 85.3 | 604 |
L2⁃Siamese | Depth | Depth | 56.0 | 89.9 | 148 |
训练集 | 测试集 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
JanusNet[ | Siamese[ | L2-Siamese | ||||||||||
0.80 | 0.66 | 0.62 | 0.69 | 0.86 | 0.75 | 0.71 | 0.77 | 0.90 | 0.83 | 0.78 | 0.82 | |
0.83 | 0.79 | 0.77 | 0.80 | 0.87 | 0.84 | 0.81 | 0.85 | 0.90 | 0.88 | 0.87 | 0.89 | |
0.50 | 0.50 | 0.50 | 0.50 | 0.75 | 0.70 | 0.67 | 0.71 | 0.82 | 0.78 | 0.73 | 0.75 | |
0.80 | 0.75 | 0.72 | 0.76 | 0.88 | 0.84 | 0.81 | 0.85 | 0.91 | 0.88 | 0.87 | 0.90 |
Tab.5 Accuracy comparison of experimental results of different methods after grouping Pandora dataset according to poses
训练集 | 测试集 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
JanusNet[ | Siamese[ | L2-Siamese | ||||||||||
0.80 | 0.66 | 0.62 | 0.69 | 0.86 | 0.75 | 0.71 | 0.77 | 0.90 | 0.83 | 0.78 | 0.82 | |
0.83 | 0.79 | 0.77 | 0.80 | 0.87 | 0.84 | 0.81 | 0.85 | 0.90 | 0.88 | 0.87 | 0.89 | |
0.50 | 0.50 | 0.50 | 0.50 | 0.75 | 0.70 | 0.67 | 0.71 | 0.82 | 0.78 | 0.73 | 0.75 | |
0.80 | 0.75 | 0.72 | 0.76 | 0.88 | 0.84 | 0.81 | 0.85 | 0.91 | 0.88 | 0.87 | 0.90 |
1 | WANG M, DENG W H. Deep face recognition: a survey[J]. Neurocomputing, 2021, 429: 215-244. 10.1016/j.neucom.2020.10.081 |
2 | BORGHI G, FABBRI M, VEZZANI R, et al. Face-from-depth for head pose estimation on depth images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(3): 596-609. 10.1109/tpami.2018.2885472 |
3 | BORGHI G, PINI S, VEZZANI R, et al. Driver face verification with depth maps[J]. Sensors, 2019, 19(15): No.3361. 10.3390/s19153361 |
4 | HUANG G B, RAMESH M, BERG T, et al. Labeled faces in the wild: a database for studying face recognition in unconstrained environments[EB/OL]. [2021-10-13].. 10.1117/12.2080393 |
5 | SCHROFF F, KALENICHENKO D, PHILBIN J. FaceNet: a unified embedding for face recognition and clustering[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 815-823. 10.1109/cvpr.2015.7298682 |
6 | YANG J L, REN P R, ZHANG D Q, et al. Neural aggregation network for video face recognition[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 5216-5225. 10.1109/cvpr.2017.554 |
7 | CHEN J C, PATEL V M, CHELLAPPA R. Unconstrained face verification using deep CNN features[C]// Proceedings of the 2016 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2016: 1-9. 10.1109/wacv.2016.7477557 |
8 | HUANG C, LI Y Y, LOY C C, et al. Deep imbalanced learning for face recognition and attribute prediction[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(11):2781-2794. 10.1109/tpami.2019.2914680 |
9 | JIAO Q F, LI R, CAO W M, et al. DDAT: dual domain adaptive translation for low-resolution face verification in the wild[J]. Pattern Recognition, 2021, 120: No.108107. 10.1016/j.patcog.2021.108107 |
10 | BALLOTTA D, BORGHI G, VEZZANI R, et al. Fully convolutional network for head detection with depth images[C]// Proceedings of the 24th International Conference on Pattern Recognition. Piscataway: IEEE, 2018: 752-757. 10.1109/icpr.2018.8545332 |
11 | BALLOTTA D, BORGHI G, VEZZANI R, et al. Head detection with depth images in the wild[C]// Proceedings of the 13th International Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4 VISAPP. Setúbal: SciTePress, 2018: 56-63. 10.5220/0006541000560063 |
12 | KIM D, HERNANDEZ M, CHOI J, et al. Deep 3D face identification[C]// Proceedings of the 2017 IEEE International Joint Conference on Biometrics. Piscataway: IEEE, 2017: 133-142. 10.1109/btas.2017.8272691 |
13 | BORGHI G, PINI S, GRAZIOLI F, et al. Face verification from depth using privileged information[C]// Proceedings of the 2018 British Machine Vision Conference. Durham: BMVA Press, 2018: No.192. |
14 | BROMLEY J, GUYON I, LeCUN Y, et al. Signature verification using a “Siamese” time delay neural network[C]// Proceedings of the 6th International Conference on Neural Information Processing Systems. San Francisco: Morgan Kaufmann Publishers Inc., 1993: 737-744. 10.1142/9789812797926_0003 |
15 | KOCH G, ZEMEL R, SALAKHUTDINOV R. Siamese neural networks for one-shot image recognition[EB/OL]. [2021-11-07].. |
16 | RANJAN R, CASTILLO C D, CHELLAPPA R. L2-constrained softmax loss for discriminative face verification[EB/OL]. 2017-06-07] [2021-11-07].. |
17 | BORGHI G, VENTURELLI M, VEZZANI R, et al. POSEidon: face-from-depth for driver pose estimation[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 5494-5503. 10.1109/cvpr.2017.583 |
18 | VENTURELLI M, BORGHI G, VEZZANI R, et al. From depth data to head pose estimation: a Siamese approach[EB/OL].(2017-03-10) [2021-19-20]./ . 10.5220/0006104501940201 |
[1] | Xingyao YANG, Yu CHEN, Jiong YU, Zulian ZHANG, Jiaying CHEN, Dongxiao WANG. Recommendation model combining self-features and contrastive learning [J]. Journal of Computer Applications, 2024, 44(9): 2704-2710. |
[2] | Shunyong LI, Shiyi LI, Rui XU, Xingwang ZHAO. Incomplete multi-view clustering algorithm based on self-attention fusion [J]. Journal of Computer Applications, 2024, 44(9): 2696-2703. |
[3] | Yu DU, Yan ZHU. Constructing pre-trained dynamic graph neural network to predict disappearance of academic cooperation behavior [J]. Journal of Computer Applications, 2024, 44(9): 2726-2731. |
[4] | Na WANG, Lin JIANG, Yuancheng LI, Yun ZHU. Optimization of tensor virtual machine operator fusion based on graph rewriting and fusion exploration [J]. Journal of Computer Applications, 2024, 44(9): 2802-2809. |
[5] | Yexin PAN, Zhe YANG. Optimization model for small object detection based on multi-level feature bidirectional fusion [J]. Journal of Computer Applications, 2024, 44(9): 2871-2877. |
[6] | Yun LI, Fuyou WANG, Peiguang JING, Su WANG, Ao XIAO. Uncertainty-based frame associated short video event detection method [J]. Journal of Computer Applications, 2024, 44(9): 2903-2910. |
[7] | Tingjie TANG, Jiajin HUANG, Jin QIN. Session-based recommendation with graph auxiliary learning [J]. Journal of Computer Applications, 2024, 44(9): 2711-2718. |
[8] | Rui ZHANG, Pengyun ZHANG, Meirong GAO. Self-optimized dual-modal multi-channel non-deep vestibular schwannoma recognition model [J]. Journal of Computer Applications, 2024, 44(9): 2975-2982. |
[9] | Jinjin LI, Guoming SANG, Yijia ZHANG. Multi-domain fake news detection model enhanced by APK-CNN and Transformer [J]. Journal of Computer Applications, 2024, 44(9): 2674-2682. |
[10] | Guanglei YAO, Juxia XIONG, Guowu YANG. Flower pollination algorithm based on neural network optimization [J]. Journal of Computer Applications, 2024, 44(9): 2829-2837. |
[11] | Ying HUANG, Jiayu YANG, Jiahao JIN, Bangrui WAN. Siamese mixed information fusion algorithm for RGBT tracking [J]. Journal of Computer Applications, 2024, 44(9): 2878-2885. |
[12] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[13] | Xiyuan WANG, Zhancheng ZHANG, Shaokang XU, Baocheng ZHANG, Xiaoqing LUO, Fuyuan HU. Unsupervised cross-domain transfer network for 3D/2D registration in surgical navigation [J]. Journal of Computer Applications, 2024, 44(9): 2911-2918. |
[14] | Hang YANG, Wanggen LI, Gensheng ZHANG, Zhige WANG, Xin KAI. Multi-layer information interactive fusion algorithm based on graph neural network for session-based recommendation [J]. Journal of Computer Applications, 2024, 44(9): 2719-2725. |
[15] | Yunchuan HUANG, Yongquan JIANG, Juntao HUANG, Yan YANG. Molecular toxicity prediction based on meta graph isomorphism network [J]. Journal of Computer Applications, 2024, 44(9): 2964-2969. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||