Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (5): 1365-1371.DOI: 10.11772/j.issn.1001-9081.2022040626
Special Issue: 第九届中国数据挖掘会议(CCDM 2022)
• China Conference on Data Mining 2022 (CCDM 2022) • Previous Articles Next Articles
Zhirong HOU1,2(), Xiaodong FAN1, Hua ZHANG1, Xiaonan MA1
Received:
2022-05-05
Revised:
2022-05-13
Accepted:
2022-06-02
Online:
2023-05-08
Published:
2023-05-10
Contact:
Zhirong HOU
About author:
HOU Zhirong, born in 1978, Ph. D. candidate. His research interests include intelligent optimization algorithm, natural language processing.通讯作者:
侯志荣
作者简介:
侯志荣(1978—),男,四川南充人,博士研究生,CCF会员,主要研究方向:智能优化算法、自然语言处理 hou.zhirong@pku.edu.cnCLC Number:
Zhirong HOU, Xiaodong FAN, Hua ZHANG, Xiaonan MA. J-SGPGN: paraphrase generation network based on joint learning of sequence and graph[J]. Journal of Computer Applications, 2023, 43(5): 1365-1371.
侯志荣, 范晓东, 张华, 马晓楠. J-SGPGN:基于序列与图的联合学习复述生成网络[J]. 《计算机应用》唯一官方网站, 2023, 43(5): 1365-1371.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022040626
数据集 | 样本数/103 | ||
---|---|---|---|
训练集 | 验证集 | 测试集 | |
Quora | 140 | 3 | 3 |
MSCOCO | 110 | 3 | 3 |
Tab. 1 Statistics of datasets
数据集 | 样本数/103 | ||
---|---|---|---|
训练集 | 验证集 | 测试集 | |
Quora | 140 | 3 | 3 |
MSCOCO | 110 | 3 | 3 |
模型 | BLEU-4 | Self-BLEU | METEOR |
---|---|---|---|
Residual-LSTM | 23.69 | 42.79 | 28.90 |
VAE-SVG | 22.52 | 36.05 | 33.60 |
BTmPG | 22.17 | 34.15 | — |
RNN+GCN | 11.99 | — | 51.39 |
J-SGPGN | 24.54 | 21.36 | 54.83 |
Tab. 2 Experimental results on Quora dataset
模型 | BLEU-4 | Self-BLEU | METEOR |
---|---|---|---|
Residual-LSTM | 23.69 | 42.79 | 28.90 |
VAE-SVG | 22.52 | 36.05 | 33.60 |
BTmPG | 22.17 | 34.15 | — |
RNN+GCN | 11.99 | — | 51.39 |
J-SGPGN | 24.54 | 21.36 | 54.83 |
模型 | BLEU-4 | Self-BLEU | METEOR |
---|---|---|---|
Residual-LSTM | — | 10.52 | 27.00 |
VAE-SVG | 25.07 | 13.77 | 30.40 |
BTmPG | 22.43 | 10.98 | — |
J-SGPGN | 10.20 | 13.08 | 31.47 |
Tab. 3 Experimental results on MSCOCO dataset
模型 | BLEU-4 | Self-BLEU | METEOR |
---|---|---|---|
Residual-LSTM | — | 10.52 | 27.00 |
VAE-SVG | 25.07 | 13.77 | 30.40 |
BTmPG | 22.43 | 10.98 | — |
J-SGPGN | 10.20 | 13.08 | 31.47 |
边预测阈值 | BLEU-4/% | Self-BLEU/% | METEOR/% |
---|---|---|---|
0.9 | 17.558 | 16.465 | 46.888 |
0.7 | 16.764 | 15.667 | 45.898 |
0.5 | 23.730 | 21.530 | 53.963 |
0.3 | 18.396 | 17.052 | 48.006 |
0.1 | 11.005 | 8.607 | 36.403 |
Tab. 4 Experimental results of edge prediction thresholds
边预测阈值 | BLEU-4/% | Self-BLEU/% | METEOR/% |
---|---|---|---|
0.9 | 17.558 | 16.465 | 46.888 |
0.7 | 16.764 | 15.667 | 45.898 |
0.5 | 23.730 | 21.530 | 53.963 |
0.3 | 18.396 | 17.052 | 48.006 |
0.1 | 11.005 | 8.607 | 36.403 |
网络层数 | BLEU-4/% | Self-BLEU/% | METEOR/% |
---|---|---|---|
2 | 20.53 | 18.49 | 49.620 |
3 | 23.73 | 21.53 | 53.963 |
4 | 21.29 | 18.67 | 50.000 |
Tab. 5 Experimental results of node prediction networks
网络层数 | BLEU-4/% | Self-BLEU/% | METEOR/% |
---|---|---|---|
2 | 20.53 | 18.49 | 49.620 |
3 | 23.73 | 21.53 | 53.963 |
4 | 21.29 | 18.67 | 50.000 |
损失函数组合 | |||
---|---|---|---|
Lseq | 1 | 0 | 0 |
Lseq+Lnode | 0.5 | 0.5 | 0 |
Lseq+Ledge | 0.5 | 0 | 0.5 |
Lseq+Lnode+Ledge | 0.4 | 0.4 | 0.2 |
Tab. 6 Weight setting of loss function ablation experiment
损失函数组合 | |||
---|---|---|---|
Lseq | 1 | 0 | 0 |
Lseq+Lnode | 0.5 | 0.5 | 0 |
Lseq+Ledge | 0.5 | 0 | 0.5 |
Lseq+Lnode+Ledge | 0.4 | 0.4 | 0.2 |
示例 | 内容 |
---|---|
源句子1 | What are my options to making money online? |
目标句子 | How can we earn money through online? |
VAE-SVG | How can I make money online? |
J-SGPGN | What is the best way to earn money online? |
源句子2 | Why did modi scrap rs 500 & rs 1000 notes? and what's the reason for the sudden introduction of the 2000 rupee note? |
目标句子 | Why did goi demobilise 500 and 1000 rupee notes? |
BTmPG | Is modi's decision on demonetization of 500 and 1000 notes by public modi? |
J-SGPGN | Why did modi ban 500 and 1000 rupee notes? |
Tab. 7 Generation samples of Quora test data
示例 | 内容 |
---|---|
源句子1 | What are my options to making money online? |
目标句子 | How can we earn money through online? |
VAE-SVG | How can I make money online? |
J-SGPGN | What is the best way to earn money online? |
源句子2 | Why did modi scrap rs 500 & rs 1000 notes? and what's the reason for the sudden introduction of the 2000 rupee note? |
目标句子 | Why did goi demobilise 500 and 1000 rupee notes? |
BTmPG | Is modi's decision on demonetization of 500 and 1000 notes by public modi? |
J-SGPGN | Why did modi ban 500 and 1000 rupee notes? |
1 | KAJIWARA T, MIURA B, ARASE Y. Monolingual transfer learning via bilingual translators for style-sensitive paraphrase generation[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2020: 8042-8049. 10.1609/aaai.v34i05.6314 |
2 | SUTSKEVER I, VINYALS O, LE Q V. Sequence to sequence learning with neural networks[C]// Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2014: 3104-3112. |
3 | 宁丹丹,陈惠鹏,秦兵. 基于序列到序列模型的句子级复述生成[J]. 智能计算机与应用, 2018, 8(3):61-63, 69. 10.3969/j.issn.2095-2163.2018.03.015 |
NING D D, CHEN H P, QIN B. Sentence-level paraphrase generation based on sequence-to-sequence model[J]. Intelligent Computer and Applications, 2018, 8(3):61-63, 69. 10.3969/j.issn.2095-2163.2018.03.015 | |
4 | PRAKASH A, HASAN S A, LEE K, et al. Neural paraphrase generation with stacked residual LSTM networks[C]// Proceedings of the 26th International Conference on Computational Linguistics: Technical Papers. [S.l.]: The COLING 2016 Organizing Committee, 2016: 2923-2934. |
5 | GUPTA A, AGARWAL A, SINGH P, et al. A deep generative framework for paraphrase generation[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2018: 5149-5156. 10.1609/aaai.v32i1.11956 |
6 | CHI X Q, XIANG Y. Augmenting paraphrase generation with syntax information using graph convolutional networks[J]. Entropy, 2021, 23(5): No.566. 10.3390/e23050566 |
7 | LI Y J, TARLOW D, BROCKSCHMIDT M, et al. Gated graph sequence neural networks[EB/OL]. [2021-08-17].. |
8 | LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]// Proceedings of the 2014 European Conference on Computer Vision, LNCS 8693. Cham: Springer, 2014: 740-755. |
9 | 李雪晴,王石,王朱君,等. 自然语言生成综述[J]. 计算机应用, 2021, 41(5): 1227-1235. 10.11772/j.issn.1001-9081.2020071069 |
LI X Q, WANG S, WANG Z J, et al. Summarization of natural language generation[J]. Journal of Computer Applications, 2021, 41(5): 1227-1235. 10.11772/j.issn.1001-9081.2020071069 | |
10 | LI Z C, JIANG X, SHANG L F, et al. Decomposable neural paraphrase generation[C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: ACL, 2019: 3403-3414. 10.18653/v1/p19-1332 |
11 | LIN Z B, LI Z R, DING N, et al. Integrating linguistic knowledge to sentence paraphrase generation[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2020: 8368-8375. 10.1609/aaai.v34i05.6354 |
12 | LIN Z, WAN X J. Pushing paraphrase away from original sentence: a multi-round paraphrase generation approach[C]// Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021. Stroudsburg, PA: ACL, 2021: 1548-1557. 10.18653/v1/2021.findings-acl.135 |
13 | KUMAR A, AHUJA K, VADAPALLI R, et al. Syntax-guided controlled generation of paraphrases[J]. Transactions of the Association for Computational Linguistics, 2020, 8: 330-345. 10.1162/tacl_a_00318 |
14 | POPOVA M, SHVETS M, OLIVA J, et al. MolecularRNN: generating realistic molecular graphs with optimized properties[EB/OL]. [2021-09-05].. |
15 | YOU J X, YING R, REN X, et al. GraphRNN: generating realistic graphs with deep auto-regressive models[C]// Proceedings of the 35th International Conference on Machine Learning. New York: JMLR.org, 2018: 5708-5717. |
16 | ANAND N, HUANG P S. Generative modeling for protein structures[C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2018: 7505-7516. |
17 | FAN S F, HUANG B. Labeled graph generative adversarial networks[EB/OL]. [2021-09-28].. |
18 | 陈雨龙,付乾坤,张岳. 图神经网络在自然语言处理中的应用[J]. 中文信息学报, 2021, 35(3): 1-23. 10.3969/j.issn.1003-0077.2021.03.001 |
CHEN Y L, FU Q K, ZHANG Y. Applications of graph neural network for natural language processing[J]. Journal of Chinese Information Processing, 2021, 35(3): 1-23. 10.3969/j.issn.1003-0077.2021.03.001 | |
19 | SONG L F, WANG Z G, YU M, et al. Exploring graph-structured passage representation for multi-hop reading comprehension with graph neural networks[EB/OL]. [2021-10-25].. 10.1109/tkde.2020.2982894 |
20 | GUO X J, ZHAO L. A systematic survey on deep generative models for graph generation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022(Early Access): 1-20. 10.1109/tpami.2022.3214832 |
21 | PENNINGTON J, SOCHER R, MANNING C D. GloVe: global vectors for word representation[C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: ACL, 2014: 1532-1543. 10.3115/v1/d14-1162 |
22 | DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Stroudsburg, PA: ACL, 2019: 4171-4186. 10.18653/v1/n18-2 |
23 | SOCHER R, BAUER J, MANNING C D, et al. Parsing with compositional vector grammars[C]// Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg, PA: ACL, 2013: 455-465. |
24 | CHO K, van MERRIËNBOER B, GU̇LÇEHRE Ç, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: ACL, 2014: 1724-1734. 10.3115/v1/d14-1179 |
25 | TU Z P, LU Z D, LIU Y, et al. Modeling coverage for neural machine translation[C]// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg, PA: ACL, 2016: 76-85. 10.18653/v1/p16-1008 |
[1] | Zhigang XU, Chuang ZHANG. Multi-level color restoration of mural image based on gated positional encoding [J]. Journal of Computer Applications, 2024, 44(9): 2931-2937. |
[2] | Weina DONG, Jia LIU, Xiaozhong PAN, Lifeng CHEN, Wenquan SUN. High-capacity robust image steganography scheme based on encoding-decoding network [J]. Journal of Computer Applications, 2024, 44(3): 772-779. |
[3] | Jia WANG-ZHU, Zhou YU, Jun YU, Jianping FAN. Video dynamic scene graph generation model based on multi-scale spatial-temporal Transformer [J]. Journal of Computer Applications, 2024, 44(1): 47-57. |
[4] | Guolong YUAN, Yujin ZHANG, Yang LIU. Image tampering forensics network based on residual feedback and self-attention [J]. Journal of Computer Applications, 2023, 43(9): 2925-2931. |
[5] | Nannan SUN, Chunhui PIAO, Xinna MA. Group buying recommendation method based on social relationship and time-series information [J]. Journal of Computer Applications, 2023, 43(6): 1719-1729. |
[6] | Lu CHEN, Daoxi CHEN, Yiming LU, Weizhong LU. Handwritten mathematical expression recognition model based on attention mechanism and encoder-decoder [J]. Journal of Computer Applications, 2023, 43(4): 1297-1302. |
[7] | Jianhua ZHONG, Chuangyi QIU, Jianshu CHAO, Ruicheng MING, Jianfeng ZHONG. Cloth-changing person re-identification model based on semantic-guided self-attention network [J]. Journal of Computer Applications, 2023, 43(12): 3719-3726. |
[8] | Hexuan HU, Huachao SUI, Qiang HU, Ye ZHANG, Zhenyun HU, Nengwu MA. Runoff forecast model based on graph attention network and dual-stage attention mechanism [J]. Journal of Computer Applications, 2022, 42(5): 1607-1615. |
[9] | Tingxiu CHEN, Jianqin YIN. Audio visual joint action recognition based on key frame selection network [J]. Journal of Computer Applications, 2022, 42(3): 731-735. |
[10] | Lanlan ZENG, Yisong WANG, Panfeng CHEN. Named entity recognition based on BERT and joint learning for judgment documents [J]. Journal of Computer Applications, 2022, 42(10): 3011-3017. |
[11] | LIU Shize, QIN Yanjun, WANG Chenxing, SU Lin, KE Qixue, LUO Haiyong, SUN Yi, WANG Baohui. Traffic flow prediction algorithm based on deep residual long short-term memory network [J]. Journal of Computer Applications, 2021, 41(6): 1566-1572. |
[12] | DU Xixi, CHENG Hua, FANG Yiquan. Reinforced automatic summarization model based on advantage actor-critic algorithm [J]. Journal of Computer Applications, 2021, 41(3): 699-705. |
[13] | DING Xiangguo, SANG Jitao. Joint extraction of entities and relations based on relation-adaptive decoding [J]. Journal of Computer Applications, 2021, 41(1): 29-35. |
[14] | ZHANG Xinyi, FENG Shimin, DING Enjie. Entity recognition and relation extraction model for coal mine [J]. Journal of Computer Applications, 2020, 40(8): 2182-2188. |
[15] | WANG Minrui, GAO Shu, YUAN Ziyong, YUAN Lei. Sequence generation model with dynamic routing for multi-label text classification [J]. Journal of Computer Applications, 2020, 40(7): 1884-1890. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||