Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (3): 772-779.DOI: 10.11772/j.issn.1001-9081.2023040477
Special Issue: 网络空间安全
• Cyber security • Previous Articles Next Articles
Weina DONG1,2, Jia LIU1,2(), Xiaozhong PAN1,2, Lifeng CHEN1,2, Wenquan SUN1,2
Received:
2023-04-26
Revised:
2023-07-06
Accepted:
2023-07-10
Online:
2023-12-04
Published:
2024-03-10
Contact:
Jia LIU
About author:
DONG Weina, born in 1997, M. S. candidate. Her research interests include information hiding.Supported by:
董炜娜1,2, 刘佳1,2(), 潘晓中1,2, 陈立峰1,2, 孙文权1,2
通讯作者:
刘佳
作者简介:
董炜娜(1997—),女,山东烟台人,硕士研究生,主要研究方向:信息隐藏基金资助:
CLC Number:
Weina DONG, Jia LIU, Xiaozhong PAN, Lifeng CHEN, Wenquan SUN. High-capacity robust image steganography scheme based on encoding-decoding network[J]. Journal of Computer Applications, 2024, 44(3): 772-779.
董炜娜, 刘佳, 潘晓中, 陈立峰, 孙文权. 基于编码-解码网络的大容量鲁棒图像隐写方案[J]. 《计算机应用》唯一官方网站, 2024, 44(3): 772-779.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023040477
(λe,λd) | 隐写容量/bpp | PSNR/dB | SSIM | 解码准确率 |
---|---|---|---|---|
(20,1) | 0.95 | 34.27 | 0.95 | 0.97 |
(1,1) | 0.97 | 25.97 | 0.68 | 0.98 |
(1,20) | 0.99 | 21.21 | 0.49 | 0.99 |
Tab. 1 Effects of model under different weight parameters
(λe,λd) | 隐写容量/bpp | PSNR/dB | SSIM | 解码准确率 |
---|---|---|---|---|
(20,1) | 0.95 | 34.27 | 0.95 | 0.97 |
(1,1) | 0.97 | 25.97 | 0.68 | 0.98 |
(1,20) | 0.99 | 21.21 | 0.49 | 0.99 |
模型 | Dropout | JPEG压缩 | 高斯模糊 | 高斯噪声 | 椒盐噪声 |
---|---|---|---|---|---|
无噪声模型 | 0.43 | 0.16 | 0.22 | 0.28 | 0.11 |
噪声模型 | 0.72 | 0.45 | 0.88 | 0.95 | 0.95 |
Tab. 2 Comparison of steganographic capacity between models under different noise attacks
模型 | Dropout | JPEG压缩 | 高斯模糊 | 高斯噪声 | 椒盐噪声 |
---|---|---|---|---|---|
无噪声模型 | 0.43 | 0.16 | 0.22 | 0.28 | 0.11 |
噪声模型 | 0.72 | 0.45 | 0.88 | 0.95 | 0.95 |
隐写方案 | 图像尺寸 | 绝对嵌入容量/b | 相对嵌入 容量/bpp | 鲁棒性 |
---|---|---|---|---|
文献[ | 64×64 | 1 634 | 0.400 000 | 否 |
文献[ | 32×32 | 410 | 0.400 000 | 否 |
文献[ | 64×64 | 300 | 0.070 000 | 否 |
文献[ | 16×16 | 52 | 0.203 000 | 是 |
文献[ | 128×128 | 8 | 0.000 488 | 是 |
文献[ | 256×256 | 200 | 0.001 020 | 是 |
文献[ | 128×128 | 64 | 0.003 900 | 是 |
文献[ | 64×64 | 1 280 | 0.313 000 | 是 |
本文方案 | 360×360 | 123 120 | 0.950 000 | 是 |
Tab. 3 Capacity comparison of different scheme
隐写方案 | 图像尺寸 | 绝对嵌入容量/b | 相对嵌入 容量/bpp | 鲁棒性 |
---|---|---|---|---|
文献[ | 64×64 | 1 634 | 0.400 000 | 否 |
文献[ | 32×32 | 410 | 0.400 000 | 否 |
文献[ | 64×64 | 300 | 0.070 000 | 否 |
文献[ | 16×16 | 52 | 0.203 000 | 是 |
文献[ | 128×128 | 8 | 0.000 488 | 是 |
文献[ | 256×256 | 200 | 0.001 020 | 是 |
文献[ | 128×128 | 64 | 0.003 900 | 是 |
文献[ | 64×64 | 1 280 | 0.313 000 | 是 |
本文方案 | 360×360 | 123 120 | 0.950 000 | 是 |
模型 | 攻击类别 | PSNR/dB | SSIM |
---|---|---|---|
无噪声模型 | Dropout | 35.68 | 0.92 |
JPEG压缩 | 35.68 | 0.92 | |
高斯模糊 | 35.68 | 0.92 | |
高斯噪声 | 30.47 | 0.72 | |
椒盐噪声 | 35.68 | 0.92 | |
噪声模型 | Dropout | 34.04 | 0.84 |
JPEG压缩 | 33.92 | 0.80 | |
高斯模糊 | 34.76 | 0.88 | |
高斯噪声 | 27.23 | 0.57 | |
椒盐噪声 | 33.83 | 0.89 |
Tab. 4 Comparison of PSNR and SSIM of images generated by models under different noise attacks
模型 | 攻击类别 | PSNR/dB | SSIM |
---|---|---|---|
无噪声模型 | Dropout | 35.68 | 0.92 |
JPEG压缩 | 35.68 | 0.92 | |
高斯模糊 | 35.68 | 0.92 | |
高斯噪声 | 30.47 | 0.72 | |
椒盐噪声 | 35.68 | 0.92 | |
噪声模型 | Dropout | 34.04 | 0.84 |
JPEG压缩 | 33.92 | 0.80 | |
高斯模糊 | 34.76 | 0.88 | |
高斯噪声 | 27.23 | 0.57 | |
椒盐噪声 | 33.83 | 0.89 |
模型 | Dropout | JPEG压缩 | 高斯模糊 | 高斯噪声 | 椒盐噪声 |
---|---|---|---|---|---|
无噪声模型 | 0.71 | 0.58 | 0.61 | 0.64 | 0.55 |
噪声模型 | 0.85 | 0.72 | 0.94 | 0.97 | 0.97 |
Tab. 5 Comparison of decoding accuracy of models under different noise attacks
模型 | Dropout | JPEG压缩 | 高斯模糊 | 高斯噪声 | 椒盐噪声 |
---|---|---|---|---|---|
无噪声模型 | 0.71 | 0.58 | 0.61 | 0.64 | 0.55 |
噪声模型 | 0.85 | 0.72 | 0.94 | 0.97 | 0.97 |
隐写方案 | 查看原图 | 不查看原图 | ||
---|---|---|---|---|
隐写容量/bpp | 解码准确率 | 隐写容量/bpp | 解码准确率 | |
文献[ | 0.24 | 0.62 | 0.02 | 0.51 |
本文方案 | 0.66 | 0.83 | 0.08 | 0.54 |
Tab. 6 Comparison of steganographic capacity and decoding accuracy among different schemes with/without viewing original image
隐写方案 | 查看原图 | 不查看原图 | ||
---|---|---|---|---|
隐写容量/bpp | 解码准确率 | 隐写容量/bpp | 解码准确率 | |
文献[ | 0.24 | 0.62 | 0.02 | 0.51 |
本文方案 | 0.66 | 0.83 | 0.08 | 0.54 |
1 | 张祎,罗向阳,王金伟,等.数字图像鲁棒隐写综述[J]. 中国图象图形学报,2022,27(1): 3-26. 10.11834/jig.210449 |
ZHANG Y, LUO X Y, WANG J W, et al. Research progress on digital image robust steganography[J]. Journal of Image and Graphics, 2022, 27(1): 3-26. 10.11834/jig.210449 | |
2 | XIAN Y-J, WANG X-Y, ZHANG Y-Q, et al. Fractal sorting vector-based least significant bit chaotic permutation for image encryption [J]. Chinese Physics B, 2021, 30(6): 060508. 10.1088/1674-1056/abda35 |
3 | TAMIMI A A, ABDALLA A M, ALALLAF O. Hiding an image inside another image using variable-rate steganography [J]. International Journal of Advanced Computer Science and Applications, 2013, 4(10): 18-21. 10.14569/ijacsa.2013.041004 |
4 | HOLUB V, FRIDRICH J. Designing steganographic distortion using directional filters [C]// Proceedings of the 2012 IEEE International Workshop on Information Forensics and Security. Piscataway: IEEE, 2012: 234-239. 10.1109/wifs.2012.6412655 |
5 | HOLUB V, FRIDRICH J, DENEMARK T. Universal distortion function for steganography in an arbitrary domain [J]. EURASIP Journal on Information Security, 2014, 2014(1): Article No.1. 10.1186/1687-417x-2014-1 |
6 | LI B, WANG M, HUANG J, et al. A new cost function for spatial image steganography [C]// Proceedings of the 2014 IEEE International Conference on Image Processing. Piscataway: IEEE, 2014: 4206-4210. 10.1109/icip.2014.7025854 |
7 | DE VLEESCHOUWER C, J-F DELAIGLE, MACQ B. Circular interpretation of bijective transformations in lossless watermarking for media asset management [J]. IEEE Transactions on Multimedia, 2003, 5(1): 97-105. 10.1109/tmm.2003.809729 |
8 | ZOU D, SHI Y Q, NI Z, et al. A semi-fragile lossless digital watermarking scheme based on integer wavelet transform [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2006, 16(10): 1294-1300. 10.1109/tcsvt.2006.881857 |
9 | NI Z, SHI Y Q, ANSARI N, et al. Robust lossless image data hiding designed for semi-fragile image authentication [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2008, 18(4): 497-509. 10.1109/tcsvt.2008.918761 |
10 | 李凌敏,侯梦然,陈琨,等.深度学习的可解释性研究综述[J]. 计算机应用,2022,42(12): 3639-3650. |
LI L M, HOU M R, CHEN K, et al. Survey on interpretability research of deep learning[J]. Journal of Computer Applications, 2022, 42(12): 3639-3650. | |
11 | 刘佳,柯彦,雷雨,等.生成对抗网络在图像隐写中的应用[J]. 武汉大学学报(理学版),2019,65(2): 139-152. |
LIU J, KE Y, LEI Y, et al. Application of generative adversarial network in image steganography[J]. Journal of Wuhan University (Natural Science Edition), 2019, 65(2): 139-152. | |
12 | 刘明明,张敏情,刘佳,等.基于生成对抗网络的无载体信息隐藏[J].应用科学学报,2018,36(2): 371-382. 10.3969/j.issn.0255-8297.2018.02.015 |
LIU M M, ZHANG M Q, LIU J, et al. Coverless information hiding based on generative adversarial networks [J]. Journal of Applied Sciences, 2018, 36(2): 371-382. 10.3969/j.issn.0255-8297.2018.02.015 | |
13 | KE Y, ZHANG M-Q, LIU J, et al. Generative steganography with Kerckhoffs’ principle [J]. Multimedia Tools and Applications, 2019, 78(10): 13805-13818. 10.1007/s11042-018-6640-y |
14 | 李福海,蒋慕容,杨磊,等.基于生成对抗网络的梯度引导太阳斑点图像去模糊方法[J]. 计算机应用,2021,41(11): 3345-3352. 10.11772/j.issn.1001-9081.2020121898 |
LI F H, JIANG M R, YANG L, et al. Solar speckle image deblurring method with gradient guidance based on generative adversarial network[J]. Journal of Computer Applications, 2021, 41(11): 3345-3352. 10.11772/j.issn.1001-9081.2020121898 | |
15 | 赵杨,李波.基于增强生成器条件生成对抗网络的单幅图像去雾[J]. 计算机应用,2021,41(12): 3686-3691. |
ZHAO Y, LI B. Single image dehazing based on conditional generative adversarial network with enhanced generator[J]. Journal of Computer Applications, 2021, 41(12): 3686-3691. | |
16 | BALUJA S. Hiding images in plain sight: deep steganography[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 2066-2076. |
17 | WU P, YANG Y, LI X. StegNet: mega image steganography capacity with deep convolutional network [J]. Future Internet, 2018, 10(6): 54. 10.3390/fi10060054 |
18 | DUAN X, JIA K, LI B, et al. Reversible image steganography scheme based on a U-Net structure [J]. IEEE Access, 2019, 7: 9314-9323. 10.1109/access.2019.2891247 |
19 | RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation [C]// Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 9351. Cham: Springer, 2015: 234-241. |
20 | ZHANG R, DONG S, LIU J. Invisible steganography via generative adversarial networks [J]. Multimedia Tools and Applications, 2019, 78(7): 8559-8575. 10.1007/s11042-018-6951-z |
21 | HAYES J, DANEZIS G. Generating steganographic images via adversarial training [C]// Proceedings of the 31st Annual Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 1951-1960. |
22 | HU D, WANG L, JIANG W, et al. A novel image steganography method via deep convolutional generative adversarial networks [J]. IEEE Access, 2018, 6: 38303-38314. 10.1109/access.2018.2852771 |
23 | ZHANG K A, CUESTA-INFANTE A, XU L, et al. SteganoGAN: high capacity image steganography with GANs [EB/OL]. (2019-01-30) [2023-02-20]. . |
24 | JING J, DENG X, XU M, et al. HiNet: deep image hiding by invertible network [C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 4733-4742. 10.1109/iccv48922.2021.00469 |
25 | GUAN Z, JING J, DENG X, et al. DeepMIH: deep invertible network for multiple image hiding[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(1): 372-390. 10.1109/tpami.2022.3141725 |
26 | LU S-P, WANG R, ZHONG T, et al. Large-capacity image steganography based on invertible neural networks [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 10811-10820. 10.1109/cvpr46437.2021.01067 |
27 | ZHU J, KAPLAN R, JOHNSON J, et al. HiDDeN: hiding data with deep networks [C]// Proceedings of the 15th European Conference on Computer Vision, LNCS 11219. Cham: Springer, 2018: 682-697. |
28 | TANCIK M, MILDENHALL B, NG R. StegaStamp: invisible hyperlinks in physical photographs [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 2114-2123. 10.1109/cvpr42600.2020.00219 |
29 | XU Y, MOU C, HU Y, et al. Robust invertible image steganography [C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 7875-7884. 10.1109/cvpr52688.2022.00772 |
30 | HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 2261-2269. 10.1109/cvpr.2017.243 |
31 | HSU C-T, WU J-L. Hidden digital watermarks in images [J]. IEEE Transactions on Image Processing, 1999, 8(1): 58-68. 10.1109/83.736686 |
32 | LIN T-Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context [C]// Proceedings of the 13th European Conference on Computer Vision, LNCS 8693. Berlin: Springer, 2014: 740-755. |
33 | LIU Q, XIANG X, QIN J, et al. A robust coverless steganography scheme using camouflage image [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(6): 4038-4051. 10.1109/tcsvt.2021.3108772 |
34 | LI Z, ZHANG M, LIU J. Robust image steganography framework based on generative adversarial network [J]. Journal of Electronic Imaging, 2021, 30(2): 023006. 10.1117/1.jei.30.2.023006 |
35 | MA R, GUO M, HOU Y, et al. Towards blind watermarking: combining invertible and non-invertible mechanisms [C]// Proceedings of the 30th ACM International Conference on Multimedia. New York: ACM, 2022: 1532-1542. 10.1145/3503161.3547950 |
36 | PENG F, CHEN G, LONG M. A robust coverless steganography based on generative adversarial networks and gradient descent approximation [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(9): 5817-5829. 10.1109/tcsvt.2022.3161419 |
37 | VOLKHONSKIY D, NAZAROV I, BURNAEV E. Steganographic generative adversarial networks [EB/OL]. [2023-04-01]. . 10.1117/12.2559429 |
38 | LIU X, CHENG M, ZHANG H, et al. Towards robust neural networks via random self-ensemble [C]// Proceedings of the 15th European Conference on Computer Vision. Berlin: Springer, 2018: 381-397. 10.1007/978-3-030-01234-2_23 |
39 | LUO Y, ZHOU T, LIU F, et al. IRWArt: levering watermarking performance for protecting high-quality artwork images [C]// Proceedings of the ACM Web Conference 2023. New York: ACM, 2023: 2340-2348. 10.1145/3543507.3583489 |
[1] | Yexin PAN, Zhe YANG. Optimization model for small object detection based on multi-level feature bidirectional fusion [J]. Journal of Computer Applications, 2024, 44(9): 2871-2877. |
[2] | Shunyong LI, Shiyi LI, Rui XU, Xingwang ZHAO. Incomplete multi-view clustering algorithm based on self-attention fusion [J]. Journal of Computer Applications, 2024, 44(9): 2696-2703. |
[3] | Yunchuan HUANG, Yongquan JIANG, Juntao HUANG, Yan YANG. Molecular toxicity prediction based on meta graph isomorphism network [J]. Journal of Computer Applications, 2024, 44(9): 2964-2969. |
[4] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[5] | Xiyuan WANG, Zhancheng ZHANG, Shaokang XU, Baocheng ZHANG, Xiaoqing LUO, Fuyuan HU. Unsupervised cross-domain transfer network for 3D/2D registration in surgical navigation [J]. Journal of Computer Applications, 2024, 44(9): 2911-2918. |
[6] | Zhigang XU, Chuang ZHANG. Multi-level color restoration of mural image based on gated positional encoding [J]. Journal of Computer Applications, 2024, 44(9): 2931-2937. |
[7] | Yuhan LIU, Genlin JI, Hongping ZHANG. Video pedestrian anomaly detection method based on skeleton graph and mixed attention [J]. Journal of Computer Applications, 2024, 44(8): 2551-2557. |
[8] | Yanjie GU, Yingjun ZHANG, Xiaoqian LIU, Wei ZHOU, Wei SUN. Traffic flow forecasting via spatial-temporal multi-graph fusion [J]. Journal of Computer Applications, 2024, 44(8): 2618-2625. |
[9] | Qianhong SHI, Yan YANG, Yongquan JIANG, Xiaocao OUYANG, Wubo FAN, Qiang CHEN, Tao JIANG, Yuan LI. Multi-granularity abrupt change fitting network for air quality prediction [J]. Journal of Computer Applications, 2024, 44(8): 2643-2650. |
[10] | Yiqun ZHAO, Zhiyu ZHANG, Xue DONG. Anisotropic travel time computation method based on dense residual connection physical information neural networks [J]. Journal of Computer Applications, 2024, 44(7): 2310-2318. |
[11] | Song XU, Wenbo ZHANG, Yifan WANG. Lightweight video salient object detection network based on spatiotemporal information [J]. Journal of Computer Applications, 2024, 44(7): 2192-2199. |
[12] | Xindong YOU, Yingzi WEN, Xinpeng SHE, Xueqiang LYU. Triplet extraction method for mine electromechanical equipment field [J]. Journal of Computer Applications, 2024, 44(7): 2026-2033. |
[13] | Xun SUN, Ruifeng FENG, Yanru CHEN. Monocular 3D object detection method integrating depth and instance segmentation [J]. Journal of Computer Applications, 2024, 44(7): 2208-2215. |
[14] | Zheng WU, Zhiyou CHENG, Zhentian WANG, Chuanjian WANG, Sheng WANG, Hui XU. Deep learning-based classification of head movement amplitude during patient anaesthesia resuscitation [J]. Journal of Computer Applications, 2024, 44(7): 2258-2263. |
[15] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||