Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (7): 1987-1993.DOI: 10.11772/j.issn.1001-9081.2022071121
Special Issue: 第39届CCF中国数据库学术会议(NDBC 2022)
• The 39th CCF National Database Conference (NDBC 2022) • Next Articles
Zhenyu LIU, Chaokun WANG(), Gaoyang GUO
Received:
2022-07-12
Revised:
2022-08-01
Accepted:
2022-08-11
Online:
2023-07-20
Published:
2023-07-10
Contact:
Chaokun WANG
About author:
LIU Zhenyu, born in 1999, M. S. candidate. His research interests include social network, community detection.Supported by:
通讯作者:
王朝坤
作者简介:
刘震宇(1999—),男,河南南阳人,硕士研究生,CCF会员,主要研究方向:社交网络、社区发现;基金资助:
CLC Number:
Zhenyu LIU, Chaokun WANG, Gaoyang GUO. Parallel algorithm of betweenness centrality for dynamic networks[J]. Journal of Computer Applications, 2023, 43(7): 1987-1993.
刘震宇, 王朝坤, 郭高扬. 面向动态网络的介数中心度并行算法[J]. 《计算机应用》唯一官方网站, 2023, 43(7): 1987-1993.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022071121
数据集 | 节点数 | 边数 | 类型 |
---|---|---|---|
opera_1000 | 1 000 | 15 484 | 无向 |
opera_10000 | 10 000 | 307 562 | 无向 |
opera_100000 | 100 000 | 1 335 005 | 无向 |
ego-Facebook | 4 039 | 88 234 | 无向 |
Oregon-010331 | 10 670 | 22 002 | 无向 |
Oregon-010428 | 10 886 | 22 493 | 无向 |
p2p-Gnutella25 | 22 687 | 54 705 | 有向 |
Wiki-Vote | 7 115 | 103 689 | 有向 |
Email-Enron | 36 692 | 183 831 | 无向 |
Brightkite | 58 228 | 214 078 | 无向 |
Tab. 1 Statistics of datasets
数据集 | 节点数 | 边数 | 类型 |
---|---|---|---|
opera_1000 | 1 000 | 15 484 | 无向 |
opera_10000 | 10 000 | 307 562 | 无向 |
opera_100000 | 100 000 | 1 335 005 | 无向 |
ego-Facebook | 4 039 | 88 234 | 无向 |
Oregon-010331 | 10 670 | 22 002 | 无向 |
Oregon-010428 | 10 886 | 22 493 | 无向 |
p2p-Gnutella25 | 22 687 | 54 705 | 有向 |
Wiki-Vote | 7 115 | 103 689 | 有向 |
Email-Enron | 36 692 | 183 831 | 无向 |
Brightkite | 58 228 | 214 078 | 无向 |
数据集 | 时间T/s | 加速比Ra | |||||||
---|---|---|---|---|---|---|---|---|---|
Br-p | b-iC(+) | b-iC(-) | PAB(+) | PAB(-) | Br-p(+) | Br-p(-) | b-iC(+) | b-iC(-) | |
opera_1000 | 1.16 | 0.21 | 0.23 | 0.04 | 0.06 | 29.00 | 19.33 | 5.25 | 3.83 |
opera_10000 | 264.61 | 13.95 | 17.16 | 0.82 | 1.58 | 322.70 | 167.47 | 17.01 | 10.86 |
opera_100000 | 15 147.30 | 1 399.09 | 1 970.63 | 160.63 | 631.26 | 94.30 | 24.00 | 8.71 | 3.12 |
ego-Facebook | 24.95 | 2.79 | 0.87 | 3.68 | 0.11 | 6.78 | 226.82 | 0.76 | 7.91 |
Oregon-010331 | 34.40 | 3.89 | 4.21 | 3.50 | 6.14 | 9.83 | 5.60 | 1.11 | 0.69 |
Oregon-010428 | 36.72 | 4.14 | 4.26 | 3.20 | 5.86 | 11.48 | 6.27 | 1.29 | 0.73 |
p2p-Gnutella25 | 179.39 | 16.52 | 17.89 | 12.23 | 35.05 | 14.67 | 5.12 | 1.35 | 0.51 |
Wiki-Vote | 60.81 | 4.17 | 4.50 | 0.79 | 1.71 | 76.97 | 35.56 | 5.28 | 2.63 |
Email-Enron | 773.63 | 78.82 | 77.30 | 55.62 | 106.68 | 13.90 | 7.25 | 1.42 | 0.72 |
Brightkite | 2 180.86 | 193.34 | 199.84 | 171.03 | 434.78 | 12.75 | 5.02 | 1.13 | 0.46 |
Tab. 2 Efficiency of update on different datasets
数据集 | 时间T/s | 加速比Ra | |||||||
---|---|---|---|---|---|---|---|---|---|
Br-p | b-iC(+) | b-iC(-) | PAB(+) | PAB(-) | Br-p(+) | Br-p(-) | b-iC(+) | b-iC(-) | |
opera_1000 | 1.16 | 0.21 | 0.23 | 0.04 | 0.06 | 29.00 | 19.33 | 5.25 | 3.83 |
opera_10000 | 264.61 | 13.95 | 17.16 | 0.82 | 1.58 | 322.70 | 167.47 | 17.01 | 10.86 |
opera_100000 | 15 147.30 | 1 399.09 | 1 970.63 | 160.63 | 631.26 | 94.30 | 24.00 | 8.71 | 3.12 |
ego-Facebook | 24.95 | 2.79 | 0.87 | 3.68 | 0.11 | 6.78 | 226.82 | 0.76 | 7.91 |
Oregon-010331 | 34.40 | 3.89 | 4.21 | 3.50 | 6.14 | 9.83 | 5.60 | 1.11 | 0.69 |
Oregon-010428 | 36.72 | 4.14 | 4.26 | 3.20 | 5.86 | 11.48 | 6.27 | 1.29 | 0.73 |
p2p-Gnutella25 | 179.39 | 16.52 | 17.89 | 12.23 | 35.05 | 14.67 | 5.12 | 1.35 | 0.51 |
Wiki-Vote | 60.81 | 4.17 | 4.50 | 0.79 | 1.71 | 76.97 | 35.56 | 5.28 | 2.63 |
Email-Enron | 773.63 | 78.82 | 77.30 | 55.62 | 106.68 | 13.90 | 7.25 | 1.42 | 0.72 |
Brightkite | 2 180.86 | 193.34 | 199.84 | 171.03 | 434.78 | 12.75 | 5.02 | 1.13 | 0.46 |
社区发现算法 | 模块度 | 时间T/s | |
---|---|---|---|
PAB(+) | PAB(-) | ||
DSGE | 0.17 | 1.95 | 2.27 |
LPA | 0.36 | 1.39 | 2.02 |
HANP | 0.40 | 0.82 | 1.58 |
Tab. 3 Efficiency of update under different quality of community structure
社区发现算法 | 模块度 | 时间T/s | |
---|---|---|---|
PAB(+) | PAB(-) | ||
DSGE | 0.17 | 1.95 | 2.27 |
LPA | 0.36 | 1.39 | 2.02 |
HANP | 0.40 | 0.82 | 1.58 |
1 | FREEMAN L C. A set of measures of centrality based on betweenness [J]. Sociometry, 1977, 40(1): 35-41. 10.2307/3033543 |
2 | BADER D A, KINTALI S, MADDURI K, et al. Approximating betweenness centrality [C]// Proceedings of the 2007 International Workshop on Algorithms and Models for the Web-Graph, LNC 4863. Berlin: Springer, 2007: 124-137. |
3 | ÖZGÜR A, VU T, ERKAN G, et al. Identifying gene-disease associations using centrality on a literature mined gene-interaction network[J]. Bioinformatics, 2008, 24(13): i277-i285. 10.1093/bioinformatics/btn182 |
4 | DALY E M, HAAHR M. Social network analysis for routing in disconnected delay-tolerant MANETs [C]// Proceedings of the 8th ACM International Symposium on Mobile Ad Hoc Networking and Computing. New York: ACM, 2007: 32-40. 10.1145/1288107.1288113 |
5 | McLAUGHLIN A, BADER D A. Revisiting edge and node parallelism for dynamic GPU graph analytics [C]// Proceedings of the 2014 IEEE International Parallel and Distributed Processing Symposium Workshops. Piscataway: IEEE, 2014: 1396-1406. 10.1109/ipdpsw.2014.157 |
6 | JAMOUR F, SKIADOPOULOS S, KALNIS P. Parallel algorithm for incremental betweenness centrality on large graphs[J]. IEEE Transactions on Parallel and Distributed Systems, 2018, 29(3): 659-672. 10.1109/tpds.2017.2763951 |
7 | SHUKLA K, REGUNTA S C, TONDOMKER S H, et al. Efficient parallel algorithms for betweenness- and closeness-centrality in dynamic graphs [C]// Proceedings of the 34th ACM International Conference on Supercomputing. New York: ACM, 2020: No.10. 10.1145/3392717.3392743 |
8 | CLEMENTE G P, CORNARO A. Community detection in attributed networks for global transfer market[J]. Annals of Operations Research, 2022: 1-27. 10.1007/s10479-021-04439-9 |
9 | DILMAGHANI S, BRUST M R, RIBEIRO C H C, et al. From communities to protein complexes: a local community detection algorithm on PPI networks[J]. PLoS ONE, 2022, 17(1): No.e0260484. 10.1371/journal.pone.0260484 |
10 | 钱珺,王朝坤,郭高扬.基于社区的动态网络节点介数中心度更新算法[J].软件学报, 2018, 29(3): 853-868. 10.13328/j.cnki.jos.005457 |
QIAN J, WANG C K, GUO G Y. Community based node betweenness centrality updating algorithms in dynamic networks[J]. Journal of Software, 2018, 29(3): 853-868. 10.13328/j.cnki.jos.005457 | |
11 | BRANDES U. A faster algorithm for betweenness centrality[J]. The Journal of Mathematical Sociology, 2001, 25(2): 163-177. 10.1080/0022250x.2001.9990249 |
12 | LEE M J, LEE J, PARK J Y, et al. QUBE: a quick algorithm for updating betweenness centrality [C]// Proceedings of the 21st International Conference on World Wide Web. New York: ACM, 2012: 351-360. 10.1145/2187836.2187884 |
13 | GREEN O, McCOLL R, BADER D A. A fast algorithm for streaming betweenness centrality [C]// Proceedings of the 2012 ASE/IEEE International Conference on Privacy, Security, Risk and Trust and 2012 ASE/IEEE International Conference on Social Computing. Piscataway: IEEE, 2012: 11-20. 10.1109/socialcom-passat.2012.37 |
14 | MAURYA S K, LIU X, MURATA T. Fast approximations of betweenness centrality with graph neural networks [C]// Proceedings of the 28th ACM International Conference on Information and Knowledge Management. New York: ACM, 2019: 2149-2152. 10.1145/3357384.3358080 |
15 | CHEHREGHANI M H, BIFET A, ABDESSALEM T. Exact and approximate algorithms for computing betweenness centrality in directed graphs[J]. Fundamenta Informaticae, 2021, 182(3): 219-242. 10.3233/fi-2021-2071 |
16 | CORMEN T H, LEISERSON C E, RIVEST R L, et al. Introduction to Algorithms[M]. 3rd ed. Cambridge: MIT Press, 2009: 787-788. |
17 | 王堃.基于多核的并行程序设计及优化[D].南京:南京大学, 2012: 10-16. |
WANG K. Parallel programming and optimization based on multi-core processors[D]. Nanjing: Nanjing University, 2012:10-16. | |
18 | NEWMAN M E J, GIRVAN M. Finding and evaluating community structure in networks[J]. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2004, 69(2): No.026113. 10.1103/physreve.69.026113 |
19 | CHEN J, SAAD Y. Dense subgraph extraction with application to community detection[J]. IEEE Transactions on Knowledge and Data Engineering, 2012, 24(7): 1216-1230. 10.1109/tkde.2010.271 |
20 | RAGHAVAN U N, ALBERT R, KUMARA S. Near linear time algorithm to detect community structures in large-scale networks[J]. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2007, 76(3): No.036106. 10.1103/physreve.76.036106 |
21 | LEUNG I X Y, HUI P, LIÒ P, et al. Towards real-time community detection in large networks[J]. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2009, 79(6): No.066107. 10.1103/physreve.79.066107 |
[1] | Shiliang LIU, Yi WANG, Yinglong MA. Non-overlapping community detection with imbalanced community sizes [J]. Journal of Computer Applications, 2024, 44(11): 3396-3402. |
[2] | Ming DU, Wanli GU, Junfeng ZHOU, Zhijun WANG. Community search method based on motif connectivity [J]. Journal of Computer Applications, 2023, 43(7): 2190-2199. |
[3] | Xiangyu LUO, Ke YAN, Yan LU, Tian WANG, Gang XIN. Nonuniform time slicing method based on prediction of community variance [J]. Journal of Computer Applications, 2023, 43(11): 3457-3463. |
[4] | LI Zhanli, LI Ying, LUO Xiangyu, LUO Yingxiao. Local community detection algorithm based on Monte-Carlo iterative solving strategy [J]. Journal of Computer Applications, 2023, 43(1): 104-110. |
[5] | Huanliang SUN, Cheng PENG, Junling LIU, Jingke XU. Community structure representation learning for "15-minute living circle" [J]. Journal of Computer Applications, 2022, 42(6): 1782-1788. |
[6] | Yuan GUO, Xuewen WANG, Chong WANG, Jinlin JIANG. Nonlinear scrambling diffusion synchronization image encryption based on dynamic network [J]. Journal of Computer Applications, 2022, 42(1): 162-170. |
[7] | LI Yafang, LIANG Ye, FENG Weiwei, ZU Baokai, KANG Yujian. Deep network embedding method based on community optimization [J]. Journal of Computer Applications, 2021, 41(7): 1956-1963. |
[8] | ZHANG Yuanjun, ZHANG Xihuang. Dynamic network representation learning model based on graph convolutional network and long short-term memory network [J]. Journal of Computer Applications, 2021, 41(7): 1857-1864. |
[9] | Huibo LI, Yunxiao ZHAO, Liang BAI. Dynamic graph representation learning method based on deep neural network and gated recurrent unit [J]. Journal of Computer Applications, 2021, 41(12): 3432-3437. |
[10] | LUO Xiangyu, LI Jianan, LUO Xiaoxia, WANG Jia. Improved community evolution relationship analysis method for dynamic graphs [J]. Journal of Computer Applications, 2020, 40(8): 2313-2318. |
[11] | SHAO Hao, WANG Lunwen, DENG Jian. Important node identification method for dynamic networks based on H operation [J]. Journal of Computer Applications, 2019, 39(9): 2669-2674. |
[12] | FU Chaojiang, WANG Tianqi, LIN Yuerong. Parallel algorithm for explicit finite element analysis based on efficient parallel computational strategy [J]. Journal of Computer Applications, 2018, 38(4): 1072-1077. |
[13] | CHEN Yuzhong, GUO Songrong, CHEN Hong, LI Wanhua, GUO Kun, HUANG Qicheng. Electricity customers arrears alert based on parallel classification algorithm [J]. Journal of Computer Applications, 2016, 36(6): 1757-1761. |
[14] | CHU Zheng, YU Jiong, LU Liang, YING Changtian, BIAN Chen, WANG Yuefei. Parallel access strategy for big data objects based on RAMCloud [J]. Journal of Computer Applications, 2016, 36(6): 1526-1532. |
[15] | WANG Chunbo, DONG Hongbin, YIN Guisheng, LIU Wenjie. Super pixel segmentation algorithm based on Hadoop [J]. Journal of Computer Applications, 2016, 36(11): 2985-2992. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||