1 |
LUO Y. Evaluating the state of the art in missing data imputation for clinical data[J]. Briefings in Bioinformatics, 2022, 23(1): bbab489. 10.1093/bib/bbab489
|
2 |
JUNGER W L, DE LEON A P. Imputation of missing data in time series for air pollutants[J]. Atmospheric Environment, 2015, 102: 96-104. 10.1016/j.atmosenv.2014.11.049
|
3 |
WANG Z, WANG L, TAN Y, et al. Fault detection based on Bayesian network and missing data imputation for building energy systems[J]. Applied Thermal Engineering, 2021, 182: 116051. 10.1016/j.applthermaleng.2020.116051
|
4 |
LIU Y-Q, WANG C, ZHANG L. Decision tree based predictive models for breast cancer survivability on imbalanced data[C]// Proceedings of the 3rd International Conference on Bioinformatics and Biomedical Engineering. Piscataway: IEEE, 2009: 1-4. 10.1109/icbbe.2009.5162571
|
5 |
LIN W-C, C-F TSAI. Missing value imputation: a review and analysis of the literature (2006 — 2017)[J]. Artificial Intelligence Review, 2020, 53: 1487-1507. 10.1007/s10462-019-09709-4
|
6 |
ZHANG Z. Missing values in big data research: some basic skills[J]. Annals of Translational Medicine, 2015, 3(21): 323.
|
7 |
YOON J, JORDON J, SCHAAR M. GAIN: Missing data imputation using generative adversarial nets[J]. Proceedings of Machine Learning Research, 2018, 80: 5689-5698. 10.48550/arXiv.1806.02920
|
8 |
YADAV M L, ROYCHOUDHURY B. Handling missing values: a study of popular imputation packages in R[J]. Knowledge-Based Systems, 2018, 160: 104-118. 10.1016/j.knosys.2018.06.012
|
9 |
VAN BUUREN S, GROOTHUIS-OUDSHOORN K G M. MICE: Multivariate imputation by chained equations in R[J]. Journal of Statistical Software, 2011, 45: 1-67. 10.18637/jss.v045.i03
|
10 |
KHAN S I, HOQUE A S M L. SICE: an improved missing data imputation technique[J]. Journal of Big Data, 2020, 7: No. 37. 10.1186/s40537-020-00313-w
|
11 |
STEKHOVEN D J, BÜHLMANN P. MissForest: non-parametric missing value imputation for mixed-type data[J]. Bioinformatics, 2012, 28(1): 112-118. 10.1093/bioinformatics/btr597
|
12 |
MAZUMDER R, HASTIE T, TIBSHIRANI R. Spectral regularization algorithms for learning large incomplete matrices[J]. The Journal of Machine Learning Research, 2010, 11: 2287-2322. 10.1002/rnc.1522
|
13 |
RAHMAN M G, ISLAM M Z. Missing value imputation using a fuzzy clustering-based EM approach[J]. Knowledge and Information Systems, 2016, 46(2): 389-422. 10.1007/s10115-015-0822-y
|
14 |
GONDARA L, WANG K. MIDA: multiple imputation using deep denoising autoencoders[C]// Proceedings of the 22nd Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining. Cham: Springer, 2018: 260-272 . 10.1007/978-3-319-93040-4_21
|
15 |
AWAN S E, BENNAMOUN M, SOHEL F, et al. Imputation of missing data with class imbalance using conditional generative adversarial networks[J]. Neurocomputing, 2021, 453: 164-171. 10.1016/j.neucom.2021.04.010
|
16 |
McKNIGHT P E, McKNIGHT K M, SIDANI S, et al. Missing Data: A Gentle Introduction[M]. New York: Guilford Press, 2007: 17.
|
17 |
MORITZ S, SARDÁ A, BARTZ-BEIELSTEIN T, et al. Comparison of different methods for univariate time series imputation in R[EB/OL]. [2023-04-23]. .
|
18 |
CHEN J, SHAO J. Nearest neighbor imputation for survey data[J]. Journal of Official Statistics, 2000, 16(2): 113-131.
|
19 |
KIM H, GOLUB G H, PARK H. Missing value estimation for DNA microarray gene expression data: local least squares imputation[J]. Bioinformatics, 2005, 21(2): 187-198. 10.1093/bioinformatics/bth499
|
20 |
AWAN S E, BENNAMOUN M, SOHEL F, et al. A reinforcement learning-based approach for imputing missing data[J]. Neural Computing and Applications, 2022, 34: 9701-9716. 10.1007/s00521-022-06958-3
|
21 |
SOVILJ D, EIROLA E, MICHE Y, et al. Extreme learning machine for missing data using multiple imputations[J]. Neurocomputing, 2016, 174: 220-231. 10.1016/j.neucom.2015.03.108
|
22 |
GARDNER M W, DORLING S R. Artificial neural networks (the multilayer perceptron): a review of applications in the atmospheric sciences[J]. Atmospheric Environment, 1998, 32(14/15): 2627-2636. 10.1016/s1352-2310(97)00447-0
|
23 |
DOOVE L L, VAN BUUREN S, DUSSELDORP E. Recursive partitioning for missing data imputation in the presence of interaction effects[J]. Computational Statistics & Data Analysis, 2014, 72: 92-104. 10.1016/j.csda.2013.10.025
|
24 |
SHAH A D, BARTLETT J W, CARPENTER J, et al. Comparison of random forest and parametric imputation models for imputing missing data using MICE: a CALIBER study[J]. American Journal of Epidemiology, 2014, 179(6): 764-774. 10.1093/aje/kwt312
|
25 |
TRAN L, LIU X, ZHOU J, et al. Missing modalities imputation via cascaded residual autoencoder[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 4971-4980. 10.1109/cvpr.2017.528
|
26 |
ŚMIEJA M, STRUSKI Ł, TABOR J, et al. Processing of missing data by neural networks[C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2018: 2724-2734.
|
27 |
GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139-144. 10.1145/3422622
|
28 |
ZHOU X, LIU X, LAN G, et al. Federated conditional generative adversarial nets imputation method for air quality missing data[J]. Knowledge-Based Systems, 2021, 228: 107261. 10.1016/j.knosys.2021.107261
|
29 |
DUA D, GRAFF C. UCI machine learning repository[DB/OL]. [2023-05-29]. .
|
30 |
CAI J-F, CANDÈS E J, SHEN Z. A singular value thresholding algorithm for matrix completion[J]. SIAM Journal on Optimization, 2010, 20(4): 1956-1982. 10.1137/080738970
|