Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (1): 284-291.DOI: 10.11772/j.issn.1001-9081.2024010102
• Multimedia computing and computer simulation • Previous Articles Next Articles
Boran YANG1, Suzhen LIN1(), Dawei LI2, Xiaofei LU3, Chenhui CUI1
Received:
2024-01-29
Revised:
2024-03-21
Accepted:
2024-03-22
Online:
2024-05-09
Published:
2025-01-10
Contact:
Suzhen LIN
About author:
YANG Boran, born in 1999, M. S. candidate. His research interests include infrared small target detection.Supported by:
杨博然1, 蔺素珍1(), 李大威2, 禄晓飞3, 崔晨辉1
通讯作者:
蔺素珍
作者简介:
杨博然(1999—),男,山西临汾人,硕士研究生,CCF会员,主要研究方向:红外弱小目标检测;基金资助:
CLC Number:
Boran YANG, Suzhen LIN, Dawei LI, Xiaofei LU, Chenhui CUI. Infrared small target detection method based on information compensation[J]. Journal of Computer Applications, 2025, 45(1): 284-291.
杨博然, 蔺素珍, 李大威, 禄晓飞, 崔晨辉. 基于信息补偿的红外弱小目标检测方法[J]. 《计算机应用》唯一官方网站, 2025, 45(1): 284-291.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024010102
方法 | SCRG | BSF | IoU | 精确率 | 召回率 | F1-Score |
---|---|---|---|---|---|---|
ACM | 79.917 | 12.284 | 0.545 | 0.633 | 0.774 | 0.670 |
LSPM | 99.631 | 13.218 | 0.582 | 0.708 | 0.713 | |
DNANet | 94.218 | 0.735 | ||||
AGPCNet | 34.304 | 0.577 | 0.765 | 0.695 | 0.693 | |
UIUNet | 90.765 | 14.363 | 0.579 | 0.687 | 0.783 | 0.707 |
FC3Net | 82.894 | 16.808 | 0.477 | 0.592 | 0.691 | 0.598 |
ABCNet | 101.484 | 26.906 | 0.556 | 0.725 | 0.699 | 0.675 |
本文方法 | 141.997 | 49.653 | 0.671 | 0.814 | 0.772 | 0.767 |
Tab. 1 Index comparison of detection results of small targets in various complex background infrared images using different methods
方法 | SCRG | BSF | IoU | 精确率 | 召回率 | F1-Score |
---|---|---|---|---|---|---|
ACM | 79.917 | 12.284 | 0.545 | 0.633 | 0.774 | 0.670 |
LSPM | 99.631 | 13.218 | 0.582 | 0.708 | 0.713 | |
DNANet | 94.218 | 0.735 | ||||
AGPCNet | 34.304 | 0.577 | 0.765 | 0.695 | 0.693 | |
UIUNet | 90.765 | 14.363 | 0.579 | 0.687 | 0.783 | 0.707 |
FC3Net | 82.894 | 16.808 | 0.477 | 0.592 | 0.691 | 0.598 |
ABCNet | 101.484 | 26.906 | 0.556 | 0.725 | 0.699 | 0.675 |
本文方法 | 141.997 | 49.653 | 0.671 | 0.814 | 0.772 | 0.767 |
方法 | SCRG | BSF | IoU | 精确率 | 召回率 | F1-Score |
---|---|---|---|---|---|---|
ACM | 89.171 | 23.662 | 0.312 | 0.370 | 0.713 | 0.426 |
LSPM | 130.740 | 25.723 | 0.368 | 0.502 | 0.607 | 0.492 |
DNANet | 29.772 | 0.694 | ||||
AGPCNet | 130.432 | 0.434 | 0.526 | 0.563 | ||
UIUNet | 134.929 | 28.845 | 0.374 | 0.479 | 0.693 | 0.499 |
FC3Net | 115.887 | 22.688 | 0.378 | 0.459 | 0.682 | 0.501 |
ABCNet | 110.203 | 18.862 | 0.395 | 0.477 | 0.727 | 0.517 |
本文方法 | 146.711 | 32.802 | 0.486 | 0.612 | 0.714 | 0.612 |
Tab. 2 Quantitative comparison of test results of different methods on IRSTD-1K dataset
方法 | SCRG | BSF | IoU | 精确率 | 召回率 | F1-Score |
---|---|---|---|---|---|---|
ACM | 89.171 | 23.662 | 0.312 | 0.370 | 0.713 | 0.426 |
LSPM | 130.740 | 25.723 | 0.368 | 0.502 | 0.607 | 0.492 |
DNANet | 29.772 | 0.694 | ||||
AGPCNet | 130.432 | 0.434 | 0.526 | 0.563 | ||
UIUNet | 134.929 | 28.845 | 0.374 | 0.479 | 0.693 | 0.499 |
FC3Net | 115.887 | 22.688 | 0.378 | 0.459 | 0.682 | 0.501 |
ABCNet | 110.203 | 18.862 | 0.395 | 0.477 | 0.727 | 0.517 |
本文方法 | 146.711 | 32.802 | 0.486 | 0.612 | 0.714 | 0.612 |
模块组合 | SCRG | BSF | IoU | 精确率 | 召回率 | F1‑Score |
---|---|---|---|---|---|---|
无 | 79.798 | 16.322 | 0.483 | 0.658 | 0.668 | 0.617 |
MIC | 112.034 | 30.426 | 0.583 | 0.754 | 0.712 | 0.705 |
GTR | 108.242 | 34.390 | 0.510 | 0.684 | 0.682 | 0.634 |
ACF | 56.717 | 0.525 | 0.706 | 0.681 | 0.644 | |
MIC+GTR | 117.965 | 43.592 | 0.733 | |||
MIC+ACF | 122.643 | 46.284 | 0.605 | 0.760 | 0.721 | |
GTR+ACF | 110.752 | 30.813 | 0.558 | 0.706 | 0.710 | 0.662 |
MIC+GTR+ACF | 141.997 | 0.671 | 0.814 | 0.772 | 0.767 |
Tab. 3 Index comparison of detection results of different module combinations
模块组合 | SCRG | BSF | IoU | 精确率 | 召回率 | F1‑Score |
---|---|---|---|---|---|---|
无 | 79.798 | 16.322 | 0.483 | 0.658 | 0.668 | 0.617 |
MIC | 112.034 | 30.426 | 0.583 | 0.754 | 0.712 | 0.705 |
GTR | 108.242 | 34.390 | 0.510 | 0.684 | 0.682 | 0.634 |
ACF | 56.717 | 0.525 | 0.706 | 0.681 | 0.644 | |
MIC+GTR | 117.965 | 43.592 | 0.733 | |||
MIC+ACF | 122.643 | 46.284 | 0.605 | 0.760 | 0.721 | |
GTR+ACF | 110.752 | 30.813 | 0.558 | 0.706 | 0.710 | 0.662 |
MIC+GTR+ACF | 141.997 | 0.671 | 0.814 | 0.772 | 0.767 |
1 | 李俊宏,张萍,王晓玮,等.红外弱小目标检测算法综述[J].中国图象图形学报, 2020, 25(9): 1739-1753. |
LI J H, ZHANG P, WANG X W, et al. Infrared small-target detection algorithms: a survey [J]. Journal of Image and Graphics, 2020, 25(9): 1739-1753. | |
2 | 赵兴科,李明磊,张弓,等.基于显著图融合的无人机载热红外图像目标检测方法[J].自动化学报, 2021, 47(9): 2120-2131. |
ZHAO X K, LI M L, ZHANG G, et al. Object detection method based on saliency map fusion for UAV-borne thermal images [J]. Acta Automatica Sinica, 2021, 47(9): 2120-2131. | |
3 | 崔晨辉,蔺素珍,李大威,等.基于孪生网络和Transformer的红外弱小目标跟踪方法[J].计算机应用, 2024, 44(2): 563-571. |
CUI C H, LIN S Z, LI D W, et al. Infrared dim small target tracking method based on Siamese network and Transformer [J]. Journal of Computer Applications, 2024, 44(2): 563-571. | |
4 | LI Y, LI Z, LI J, et al. Robust small infrared target detection using weighted adaptive ring top-hat transformation [J]. Signal Processing, 2024, 217: No.109339. |
5 | ZHANG M, ZHANG R, YANG Y, et al. ISNet: shape matters for infrared small target detection [C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 867-876. |
6 | DENG L, ZHANG J, XU G, et al. Infrared small target detection via adaptive M-estimator ring top-hat transformation [J]. Pattern Recognition, 2021, 112: No.107729. |
7 | 蔺素珍,张海松,禄晓飞,等. RBNSM:一种复杂背景下红外弱小目标检测新方法[J].红外技术, 2022, 44(7): 667-675. |
LIN S Z, ZHANG H S, LU X F, et al. RBNSM: a new method for infrared dim and small target detection in complex backgrounds [J]. Infrared Technology, 2022, 44(7): 667-675. | |
8 | ZHANG T, PENG Z, WU H, et al. Infrared small target detection via self-regularized weighted sparse model [J]. Neurocomputing, 2021, 420: 124-148. |
9 | REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. |
10 | WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors [C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 7464-7475. |
11 | LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector [C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9905. Cham: Springer, 2016: 21-37. |
12 | DAI Y, WU Y, ZHOU F, et al. Asymmetric contextual modulation for infrared small target detection [C]// Proceedings of the 2021 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2021: 949-958. |
13 | HUANG L, DAI S, HUANG T, et al. Infrared small target segmentation with multiscale feature representation [J]. Infrared Physics and Technology, 2021, 116: No.103755. |
14 | LI B, XIAO C, WANG L, et al. Dense nested attention network for infrared small target detection [J]. IEEE Transactions on Image Processing, 2023, 32: 1745-1758. |
15 | WU X, HONG D, CHANUSSOT J. UIU-Net: U-Net in U-Net for infrared small object detection [J]. IEEE Transactions on Image Processing, 2023, 32: 364-376. |
16 | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. |
17 | CAO Y, XU J, LIN S, et al. GCNet: non-local networks meet squeeze-excitation networks and beyond [C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshops. Piscataway: IEEE, 2019: 1971-1980. |
18 | DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale [EB/OL]. [2023-11-22]. . |
19 | HU J, SHEN L, SUN G. Squeeze-and-excitation networks [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141. |
20 | LIU F, GAO C, CHEN F, et al. Infrared small and dim target detection with Transformer under complex backgrounds [J]. IEEE Transactions on Image Processing, 2023, 32: 5921-5932. |
21 | ZHANG T, LI L, CAO S, et al. Attention-guided pyramid context networks for detecting infrared small target under complex background [J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(4): 4250-4261. |
22 | ZHANG M, YUE K, ZHANG J, et al. Exploring feature compensation and cross-level correlation for infrared small target detection [C]// Proceedings of the 30th ACM International Conference on Multimedia. New York: ACM, 2022: 1857-1865. |
23 | PAN P, WANG H, WANG C, et al. ABC: attention with bilinear correlation for infrared small target detection [C]// Proceedings of the 2023 IEEE International Conference on Multimedia and Expo. Piscataway: IEEE, 2023: 2381-2386. |
[1] | Shang LIU, Yuwei ZHOU, Rao DAI, Linfang DONG, Meng LIU. Small target detection algorithm in remote sensing images integrating attention and contextual information [J]. Journal of Computer Applications, 2025, 45(1): 292-300. |
[2] | Zhangjian JI, Na DU. Tiny target detection based on improved VariFocalNet [J]. Journal of Computer Applications, 2024, 44(7): 2200-2207. |
[3] | Tianhua CHEN, Jiaxuan ZHU, Jie YIN. Bird recognition algorithm based on attention mechanism [J]. Journal of Computer Applications, 2024, 44(4): 1114-1120. |
[4] | Zhanjun JIANG, Baijing WU, Long MA, Jing LIAN. Faster-RCNN water-floating garbage recognition based on multi-scale feature and polarized self-attention [J]. Journal of Computer Applications, 2024, 44(3): 938-944. |
[5] | Yuliang ZHENG, Yunhua CHEN, Weijie BAI, Pinghua CHEN. Vehicle target detection by fusing event data and image frames [J]. Journal of Computer Applications, 2024, 44(3): 931-937. |
[6] | Cunyi LIAO, Yi ZHENG, Weijin LIU, Huan YU, Shouyin LIU. Decoupling-fusing algorithm for multiple tasks with autonomous driving environment perception [J]. Journal of Computer Applications, 2024, 44(2): 424-431. |
[7] | Yudong PANG, Zhixing LI, Weijie LIU, Tianhao LI, Ningning WANG. Small target detection model in overlooking scenes on tower cranes based on improved real-time detection Transformer [J]. Journal of Computer Applications, 2024, 44(12): 3922-3929. |
[8] | Lin WANG, Jingliang LIU, Wuwei WANG. Small target detection method in UAV images based on fusion of dilated convolution and Transformer [J]. Journal of Computer Applications, 2024, 44(11): 3595-3602. |
[9] | Dahai LI, Bingtao LI, Zhendong WANG. Underwater target detection algorithm based on improved YOLOv8 [J]. Journal of Computer Applications, 2024, 44(11): 3610-3616. |
[10] | Meijia LIANG, Xinwu LIU, Xiaopeng HU. Small target detection algorithm for train operating environment image based on improved YOLOv3 [J]. Journal of Computer Applications, 2023, 43(8): 2611-2618. |
[11] | Xin TANG, Bo PENG, Fei TENG. Infrared small target tracking method based on state information [J]. Journal of Computer Applications, 2023, 43(6): 1938-1942. |
[12] | Haifeng LI, Fan ZHANG, Minnan PIAO, Huaichao WANG, Nansha LI, Zhongcheng GUI. Automatic detection of targets under airport pavement based on channel and spatial attention [J]. Journal of Computer Applications, 2023, 43(3): 930-935. |
[13] | LI Kewen, YANG Jiantao, HUANG Zongchao. Improved YOLOv3 target detection based on boundary limit point features [J]. Journal of Computer Applications, 2023, 43(1): 81-87. |
[14] | CHEN Haiyan, JIA Mingming, ZHAO Wenli, WANG Chanfei. Target detection of Ochotona curzoniae based on embedded Jetson TX2 [J]. Journal of Computer Applications, 2023, 43(1): 98-103. |
[15] | Zhihong XI, Jiaxu WEN. Indoor dynamic scene localization and mapping based on target detection [J]. Journal of Computer Applications, 2022, 42(9): 2853-2857. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||