Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (6): 1987-1997.DOI: 10.11772/j.issn.1001-9081.2024050691
• Multimedia computing and computer simulation • Previous Articles
Dehui ZHOU1, Jun ZHAO1(), Jinfeng CHENG2
Received:
2024-05-28
Revised:
2024-08-15
Accepted:
2024-08-20
Online:
2024-09-04
Published:
2025-06-10
Contact:
Jun ZHAO
About author:
ZHOU Dehui, born in 1999, M. S. candidate. His research interests include computer vision, deep learning.Supported by:
通讯作者:
赵军
作者简介:
周得辉(1999 —),男,甘肃兰州人,硕士研究生,CCF会员,主要研究方向:计算机视觉、深度学习基金资助:
CLC Number:
Dehui ZHOU, Jun ZHAO, Jinfeng CHENG. Tiny defect detection algorithm for bearing surface based on RT-DETR[J]. Journal of Computer Applications, 2025, 45(6): 1987-1997.
周得辉, 赵军, 程进峰. 基于RT-DETR的轴承表面微小缺陷检测算法[J]. 《计算机应用》唯一官方网站, 2025, 45(6): 1987-1997.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024050691
网络 | 计算量/GFLOPs | 参数量/106 |
---|---|---|
ResNet18 | 1.80 | 11.7 |
ResNet34 | 3.60 | 21.8 |
FasterNet-T1 | 0.85 | 7.6 |
FasterNet-T2 | 1.90 | 15.0 |
Tab. 1 Comparison of computational overhead
网络 | 计算量/GFLOPs | 参数量/106 |
---|---|---|
ResNet18 | 1.80 | 11.7 |
ResNet34 | 3.60 | 21.8 |
FasterNet-T1 | 0.85 | 7.6 |
FasterNet-T2 | 1.90 | 15.0 |
方法 | P/% | R/% | mAP/% | 计算量/GFLOPs | 帧率/ (frame·s-1) |
---|---|---|---|---|---|
None | 89.5 | 84.7 | 88.4 | 37.2 | 125 |
CPCA | 90.5 | 84.0 | 88.7 | 48.2 | 108 |
SGE | 90.4 | 86.0 | 89.5 | 47.7 | 112 |
CA | 90.4 | 86.2 | 89.8 | 47.7 | 112 |
CBAM | 91.2 | 86.0 | 90.0 | 47.7 | 112 |
EffectiveSE | 91.5 | 85.9 | 90.3 | 47.7 | 112 |
Tab. 2 Comparison of attention mechanisms
方法 | P/% | R/% | mAP/% | 计算量/GFLOPs | 帧率/ (frame·s-1) |
---|---|---|---|---|---|
None | 89.5 | 84.7 | 88.4 | 37.2 | 125 |
CPCA | 90.5 | 84.0 | 88.7 | 48.2 | 108 |
SGE | 90.4 | 86.0 | 89.5 | 47.7 | 112 |
CA | 90.4 | 86.2 | 89.8 | 47.7 | 112 |
CBAM | 91.2 | 86.0 | 90.0 | 47.7 | 112 |
EffectiveSE | 91.5 | 85.9 | 90.3 | 47.7 | 112 |
实验 | FasterNet-T1 | AERF | CGA+CIS-FPN | NWD+Inner-MPDIoU | P/% | R/% | mAP/% | 计算量/ GFLOPs | 帧率/ (frame·s-1) |
---|---|---|---|---|---|---|---|---|---|
Ⅰ | 90.3 | 83.8 | 88.2 | 57.0 | 96 | ||||
Ⅱ | √ | 89.5 | 84.7 | 88.4 | 37.2 | 125 | |||
Ⅲ | √ | 91.1 | 85.6 | 90.2 | 60.7 | 90 | |||
Ⅳ | √ | 90.8 | 86.1 | 90.2 | 49.9 | 98 | |||
Ⅴ | √ | 91.2 | 83.9 | 88.6 | 57.0 | 96 | |||
Ⅵ | √ | √ | 91.5 | 85.9 | 90.3 | 47.7 | 112 | ||
Ⅶ | √ | √ | √ | 91.6 | 86.1 | 90.6 | 40.6 | 116 | |
Ⅷ | √ | √ | √ | √ | 92.0 | 86.5 | 90.7 | 40.6 | 116 |
Tab. 3 Results of ablation experiments
实验 | FasterNet-T1 | AERF | CGA+CIS-FPN | NWD+Inner-MPDIoU | P/% | R/% | mAP/% | 计算量/ GFLOPs | 帧率/ (frame·s-1) |
---|---|---|---|---|---|---|---|---|---|
Ⅰ | 90.3 | 83.8 | 88.2 | 57.0 | 96 | ||||
Ⅱ | √ | 89.5 | 84.7 | 88.4 | 37.2 | 125 | |||
Ⅲ | √ | 91.1 | 85.6 | 90.2 | 60.7 | 90 | |||
Ⅳ | √ | 90.8 | 86.1 | 90.2 | 49.9 | 98 | |||
Ⅴ | √ | 91.2 | 83.9 | 88.6 | 57.0 | 96 | |||
Ⅵ | √ | √ | 91.5 | 85.9 | 90.3 | 47.7 | 112 | ||
Ⅶ | √ | √ | √ | 91.6 | 86.1 | 90.6 | 40.6 | 116 | |
Ⅷ | √ | √ | √ | √ | 92.0 | 86.5 | 90.7 | 40.6 | 116 |
算法 | P/% | R/% | mAP/% | 计算量/ GFLOPs | 帧率/ (frame·s-1) |
---|---|---|---|---|---|
Faster R-CNN[ | 87.9 | 80.8 | 85.4 | 178.5 | 16 |
文献[ | 89.2 | 81.9 | 86.6 | 75.4 | 67 |
文献[ | 88.2 | 81.3 | 86.9 | 19.4 | 116 |
文献[ | 90.0 | 83.6 | 87.8 | 110.4 | 132 |
YOLOv8m[ | 90.2 | 83.4 | 88.1 | 78.7 | 95 |
RT-DETR-r18[ | 90.3 | 83.8 | 88.2 | 57.0 | 96 |
YOLOv10m[ | 88.7 | 83.4 | 88.4 | 58.9 | 94 |
RT-DETR-KAN[ | 90.6 | 86.8 | 90.0 | 117.4 | 40 |
RT-DETR-Mamba[ | 90.9 | 87.2 | 90.4 | 54.5 | 72 |
FECS-DETR | 92.0 | 86.5 | 90.7 | 40.6 | 116 |
Tab. 4 Results of comparison experiments of different detection algorithms
算法 | P/% | R/% | mAP/% | 计算量/ GFLOPs | 帧率/ (frame·s-1) |
---|---|---|---|---|---|
Faster R-CNN[ | 87.9 | 80.8 | 85.4 | 178.5 | 16 |
文献[ | 89.2 | 81.9 | 86.6 | 75.4 | 67 |
文献[ | 88.2 | 81.3 | 86.9 | 19.4 | 116 |
文献[ | 90.0 | 83.6 | 87.8 | 110.4 | 132 |
YOLOv8m[ | 90.2 | 83.4 | 88.1 | 78.7 | 95 |
RT-DETR-r18[ | 90.3 | 83.8 | 88.2 | 57.0 | 96 |
YOLOv10m[ | 88.7 | 83.4 | 88.4 | 58.9 | 94 |
RT-DETR-KAN[ | 90.6 | 86.8 | 90.0 | 117.4 | 40 |
RT-DETR-Mamba[ | 90.9 | 87.2 | 90.4 | 54.5 | 72 |
FECS-DETR | 92.0 | 86.5 | 90.7 | 40.6 | 116 |
1 | LIU B, YANG Y, WANG S, et al. An automatic system for bearing surface tiny defect detection based on multi-angle illuminations [J]. Optik, 2020, 208: No.164517. |
2 | WANG H, YANG J, HU Z. Current status and prospect of roller bearing surface defect detection[J]. Procedia Engineering, 2011, 15: 4331-4336. |
3 | 陈金贵,陈昊,张奔. 基于改进Niblack算法的轴承滚子表面缺陷检测[J]. 组合机床与自动化加工技术, 2018(12):82-85, 97. |
CHEN J G, CHEN H, ZHANG B. Research on surface defect detection of bearing roller based on improved Niblack algorithm[J]. Modular Machine Tool and Automatic Manufacturing Technique, 2018(12): 82-85, 97. | |
4 | 魏利胜,丁坤,段志达,等. 融合单应性约束SIFT特征匹配的轴承滚子检测[J]. 电子测量与仪器学报, 2019, 33(9):107-113. |
WEI L S, DING K, DUAN Z D, et al. Bearing roller detection based on SIFT feature matching with homography constraints[J]. Journal of Electronic Measurement and Instrumentation, 2019, 33(9): 107-113. | |
5 | 陈硕,林志敏,吴岳彬,等. 轴承套圈端面缺陷在线视觉检测的研究与实现[J]. 轴承, 2022(2):48-54. |
CHEN S, LIN Z M, WU Y B, et al. Research and implementation of on-line visual inspection of defects on end face of bearing rings[J]. Bearing, 2022(2): 48-54. | |
6 | 石炜,刘松,杨锦春,等. 列车滚子轴承表面缺陷图像的边缘提取[J].机械设计与制造, 2024(11): 179-183. |
SHI W, LIU S, YANG J C, et al. Edge extraction of surface defect image of train roller bearing[J]. Machinery Design and Manufacture, 2024(11): 179-183. | |
7 | SONG K K, ZHAO M, LIAO X, et al. An improved bearing defect detection algorithm based on YOLO[C]// Proceedings of the 2022 International Symposium on Control Engineering and Robotics. Piscataway: IEEE, 2022: 184-187. |
8 | 高立明,贾书海,张国龙,等. 基于改进Faster R-CNN的绝缘轴承表面缺陷检测方法[J]. 轴承, 2023(4):1-8. |
GAO L M, JIA S H, ZHANG G L, et al. Detection method for surface defects of insulated bearings based on improved Faster R-CNN[J]. Bearing, 2023(4): 1-8. | |
9 | 李亚东,马行,穆春阳,等. 改进YOLOX网络的轴承缺陷小目标检测方法[J]. 计算机工程与应用, 2023, 59(1):100-107. |
LI Y D, MA X, MU C Y, et al. Improved small target detection method of bearing defects in YOLOX network[J]. Computer Engineering and Applications, 2023, 59(1): 100-107. | |
10 | 安冬,胡荣华,王丽艳,等. 基于Transformer的陶瓷轴承表面缺陷检测方法[J]. 组合机床与自动化加工技术, 2024(2):160-163, 168. |
AN D, HU R H, WANG L Y, et al. Ceramic bearing surface defect detection method based on Transformer[J]. Modular Machine Tool and Automatic Manufacturing Technique, 2024(2): 160-163, 168. | |
11 | 袁天乐,袁巨龙,朱勇建,等. 基于改进YOLOv5的推力球轴承表面缺陷检测算法[J]. 浙江大学学报(工学版), 2022, 56(12):2349-2357. |
YUAN T L, YUAN J L, ZHU Y J, et al. Surface defect detection algorithm of thrust ball bearing based on improved YOLOv5[J]. Journal of Zhejiang University (Engineering Science), 2022, 56(12): 2349-2357. | |
12 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010. |
13 | 庞玉东,李志星,刘伟杰,等. 基于改进实时检测Transformer的塔机上俯视场景小目标检测模型[J]. 计算机应用, 2024, 44(12): 3922-3929. |
PANG Y D, LI Z X, LIU W J, et al. Small target detection model in overlooking scenes on tower cranes based on improved real-time detection Transformer[J]. Journal of Computer Applications, 2024, 44(12): 3922-3929. | |
14 | ZHAO Y, LV W, XU S, et al. DETRs beat YOLOs on real-time object detection[C]// Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 16965-16974. |
15 | CHEN J, KAO S H, HE H, et al. Run, don’t walk: chasing higher FLOPS for faster neural networks[C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 12021-12031. |
16 | LIU X, PENG H, ZHENG N, et al. EfficientViT: memory efficient vision transformer with cascaded group attention[C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 14420-14430. |
17 | HE Y H, LI J F. TSRes-YOLO: an accurate and fast cascaded detector for waste collection and transportation supervision[J]. Engineering Applications of Artificial Intelligence, 2023: 126. |
18 | LEE Y, PARK J. CenterMask: real-time anchor-free instance segmentation[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 13903-13912. |
19 | HU J, SHEN L, SUN G, et al. Squeeze-and-excitation networks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141. |
20 | LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 8759-8768. |
21 | WANG C, HE W, NIE Y, et al. Gold-YOLO: efficient object detector via gather-and-distribute mechanism[C]// Proceedings of the 37th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2023: 51094-51112. |
22 | CHEN Y, ZHANG C, CHEN B, et al. Accurate leukocyte detection based on deformable-DETR and multi-level feature fusion for aiding diagnosis of blood diseases[J]. Computers in Biology and Medicine, 2024, 170: No.107917. |
23 | FAN Q, HUANG H, CHEN M, et al. RMT: retentive networks meet vision Transformers [C]// Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 5641-5651. |
24 | WANG J, XU C, YANG W, et al. A normalized Gaussian Wasserstein distance for tiny object detection[EB/OL]. [2024-05-02].. |
25 | ZHANG H, XU C, ZHANG S. Inner-IoU: more effective intersection over union loss with auxiliary bounding box [EB/OL]. [2024-05-06].. |
26 | MA S, XU Y. MPDIoU: a loss for efficient and accurate bounding box regression[EB/OL]. [2024-05-08].. |
27 | HUANG H, CHEN Z, ZOU Y, et al. Channel prior convolutional attention for medical image segmentation[J]. Computers in Biology and Medicine, 2024, 178: No.108784. |
28 | HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]// Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 13708-13717. |
29 | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11211. Cham: Springer, 2018: 3-19. |
30 | LI X, HU X, YANG J. Spatial group-wise enhance: improving semantic feature learning in convolutional networks[EB/OL]. [2024-07-25].. |
31 | GIRSHICK R. Fast R-CNN[C]// Proceedings of the 2015 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2015: 1440-1448. |
32 | XU H, PAN H, LI J. Surface defect detection of bearing rings based on an improved YOLOv5 network[J]. Sensors, 2023, 23(17): No.7443. |
33 | 李伟,姚小敏,张鹏超,等. 改进的YOLO-V7钢材表面缺陷检测算法研究[J/OL]. 机械科学与技术 [2024-03-07].. |
LI W, YAO X M, ZHANG P C, et al. Research on improved YOLO-V7 steel surface defect detection algorithm[J/OL]. Mechanical Science and Technology for Aerospace Engineering [2024-03-07].. | |
34 | VARGHESE R, SAMBATH M. YOLOv8: a novel object detection algorithm with enhanced performance and robustness [C] //2024 International Conference on Advances in Data Engineering and Intelligent Computing Systems. Piscataway: IEEE, 2024:1-6. |
35 | WANG A, CHEN H, LIU L H, et al. YOLOv10: realtime end-to-end object detection [EB/OL].[2024-04-11]. . |
36 | LIU Z, WANG Y, VAIDYA S, et al. KAN:Kolmogorov-arnold networks[EB/OL].[2024-04-11]. . |
37 | GU A, DAO T. Mamba: Linear-time sequence modeling with selective state spaces [EB/OL].[2024-04-11]. . |
38 | SONG K, YAN Y. A noise robust method based on completed local binary patterns for hot-rolled steel strip surface defects[J]. Applied Surface Science, 2013, 285(Pt B): 858-864. |
39 | DING R W, DAI L H, LI G P, et al. TDD-net: a tiny defect detection network for printed circuit boards[J]. CAAI Transactions on Intelligence Technology, 2019, 4(2): 110-116. |
[1] | Jie HU, Cui WU, Jun SUN, Yan ZHANG. Document-level relation extraction model based on anaphora and logical reasoning [J]. Journal of Computer Applications, 2025, 45(5): 1496-1503. |
[2] | Quan WANG, Xinyu CAO, Qidong CHEN. Roadside traffic object detection model and deployment for vehicle-road collaboration [J]. Journal of Computer Applications, 2025, 45(3): 1016-1024. |
[3] | Qiurun HE, Jie HU, Bo PENG, Tianyuan LI. Fabric defect detection algorithm based on context information and multi-scale feature fusion [J]. Journal of Computer Applications, 2025, 45(2): 640-646. |
[4] | Jiayang GUI, Shunji WANG, Zhengkang ZHOU, Jiashan TANG. Tunnel foreign object detection algorithm based on improved YOLOv8n [J]. Journal of Computer Applications, 2025, 45(2): 655-661. |
[5] | Boran YANG, Suzhen LIN, Dawei LI, Xiaofei LU, Chenhui CUI. Infrared small target detection method based on information compensation [J]. Journal of Computer Applications, 2025, 45(1): 284-291. |
[6] | Shang LIU, Yuwei ZHOU, Rao DAI, Linfang DONG, Meng LIU. Small target detection algorithm in remote sensing images integrating attention and contextual information [J]. Journal of Computer Applications, 2025, 45(1): 292-300. |
[7] | Zhonghua LI, Yunqi BAI, Xuejin WANG, Leilei HUANG, Chujun LIN, Shiyu LIAO. Low illumination face detection based on image enhancement [J]. Journal of Computer Applications, 2024, 44(8): 2588-2594. |
[8] | Kaili DENG, Weibo WEI, Zhenkuan PAN. Industrial defect detection method with improved masked autoencoder [J]. Journal of Computer Applications, 2024, 44(8): 2595-2603. |
[9] | Yongjin ZHANG, Jian XU, Mingxing ZHANG. Lightweight algorithm for impurity detection in raw cotton based on improved YOLOv7 [J]. Journal of Computer Applications, 2024, 44(7): 2271-2278. |
[10] | Zhe KONG, Han LI, Shaowei GAN, Mingru KONG, Bingtao HE, Ziyu GUO, Ducheng JIN, Zhaowen QIU. Structure segmentation model for 3D kidney images based on asymmetric multi-decoder and attention module [J]. Journal of Computer Applications, 2024, 44(7): 2216-2224. |
[11] | Xiaohui CHENG, Yuntian HUANG, Ruifang ZHANG. Lightweight infrared road scene detection model based on multiscale and weighted coordinate attention [J]. Journal of Computer Applications, 2024, 44(6): 1927-1934. |
[12] | Tianhua CHEN, Jiaxuan ZHU, Jie YIN. Bird recognition algorithm based on attention mechanism [J]. Journal of Computer Applications, 2024, 44(4): 1114-1120. |
[13] | Wei LI, Ling CHEN, Xiuyuan XU, Min ZHU, Jixiang GUO, Kai ZHOU, Hao NIU, Yuchen ZHANG, Shanye YI, Yi ZHANG, Fengming LUO. Interstitial lung disease segmentation algorithm based on multi-task learning [J]. Journal of Computer Applications, 2024, 44(4): 1285-1293. |
[14] | Chenhui CUI, Suzhen LIN, Dawei LI, Xiaofei LU, Jie WU. Infrared dim small target tracking method based on Siamese network and Transformer [J]. Journal of Computer Applications, 2024, 44(2): 563-571. |
[15] | Yudong PANG, Zhixing LI, Weijie LIU, Tianhao LI, Ningning WANG. Small target detection model in overlooking scenes on tower cranes based on improved real-time detection Transformer [J]. Journal of Computer Applications, 2024, 44(12): 3922-3929. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||