Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (7): 2271-2278.DOI: 10.11772/j.issn.1001-9081.2023070969
• Multimedia computing and computer simulation • Previous Articles Next Articles
Yongjin ZHANG, Jian XU(), Mingxing ZHANG
Received:
2023-07-19
Revised:
2023-09-22
Accepted:
2023-09-22
Online:
2023-10-26
Published:
2024-07-10
Contact:
Jian XU
About author:
ZHANG Yongjin, born in 1998, M. S. candidate. His research interests include artificial intelligence, deep learning.Supported by:
通讯作者:
徐健
作者简介:
张勇进(1998—),男,陕西西安人,硕士研究生,主要研究方向:人工智能、深度学习;基金资助:
CLC Number:
Yongjin ZHANG, Jian XU, Mingxing ZHANG. Lightweight algorithm for impurity detection in raw cotton based on improved YOLOv7[J]. Journal of Computer Applications, 2024, 44(7): 2271-2278.
张勇进, 徐健, 张明星. 面向轻量化的改进YOLOv7棉杂检测算法[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2271-2278.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023070969
模型 | 网络层的层数 | 耗时/ms | 浮点运算量/GFLOPs | mAP/% | ||||
---|---|---|---|---|---|---|---|---|
3×3卷积层 | 1×1卷积层 | 池化层 | 连接层 | 采样层 | ||||
YOLOv7 | 44 | 36 | 7 | 15 | 2 | 29.1 | 105.2 | 95.9 |
Light-YOLOv7 | 22 | 14 | 5 | 9 | 1 | 23.3 | 106.8 | 92.2 |
Tab. 1 Data Comparison between YOLOv7 and Light-YOLOv7
模型 | 网络层的层数 | 耗时/ms | 浮点运算量/GFLOPs | mAP/% | ||||
---|---|---|---|---|---|---|---|---|
3×3卷积层 | 1×1卷积层 | 池化层 | 连接层 | 采样层 | ||||
YOLOv7 | 44 | 36 | 7 | 15 | 2 | 29.1 | 105.2 | 95.9 |
Light-YOLOv7 | 22 | 14 | 5 | 9 | 1 | 23.3 | 106.8 | 92.2 |
棉杂种类 | YOLOv7 | Light-YOLOv7-FNR | ||||
---|---|---|---|---|---|---|
精确率 | 召回率 | mAP | 精确率 | 召回率 | mAP | |
平均值 | 90.9 | 91.1 | 95.9 | 93.1 | 91.2 | 96.0 |
原棉秆 | 89.7 | 91.0 | 96.0 | 93.5 | 88.3 | 94.3 |
发丝 | 78.8 | 91.8 | 91.8 | 84.4 | 90.9 | 92.4 |
原棉叶 | 98.3 | 84.6 | 96.9 | 95.6 | 90.2 | 98.1 |
棉籽壳 | 97.0 | 97.0 | 99.0 | 98.9 | 95.4 | 99.3 |
Tab. 2 Detection results of YOLOv7 and Light-YOLOv7-FNR on cotton dataset
棉杂种类 | YOLOv7 | Light-YOLOv7-FNR | ||||
---|---|---|---|---|---|---|
精确率 | 召回率 | mAP | 精确率 | 召回率 | mAP | |
平均值 | 90.9 | 91.1 | 95.9 | 93.1 | 91.2 | 96.0 |
原棉秆 | 89.7 | 91.0 | 96.0 | 93.5 | 88.3 | 94.3 |
发丝 | 78.8 | 91.8 | 91.8 | 84.4 | 90.9 | 92.4 |
原棉叶 | 98.3 | 84.6 | 96.9 | 95.6 | 90.2 | 98.1 |
棉籽壳 | 97.0 | 97.0 | 99.0 | 98.9 | 95.4 | 99.3 |
模型 | mAP | 耗时/ms | ||||
---|---|---|---|---|---|---|
棉秆 | 棉叶 | 头发 | 棉籽 | 平均 | ||
YOLOv7 | 96.0 | 96.9 | 91.8 | 99.0 | 95.9 | 29.10 |
Light-YOLOv7FN | 93.8 | 95.5 | 88.5 | 99.3 | 94.3 | 19.50 |
Light-YOLOv7R | 96.9 | 98.8 | 93.6 | 99.4 | 97.2 | 28.19 |
Light-YOLOv7FNR | 94.3 | 98.1 | 92.4 | 99.3 | 96.0 | 18.20 |
Tab. 3 Detection performance of different improved models on raw cotton impurity dataset
模型 | mAP | 耗时/ms | ||||
---|---|---|---|---|---|---|
棉秆 | 棉叶 | 头发 | 棉籽 | 平均 | ||
YOLOv7 | 96.0 | 96.9 | 91.8 | 99.0 | 95.9 | 29.10 |
Light-YOLOv7FN | 93.8 | 95.5 | 88.5 | 99.3 | 94.3 | 19.50 |
Light-YOLOv7R | 96.9 | 98.8 | 93.6 | 99.4 | 97.2 | 28.19 |
Light-YOLOv7FNR | 94.3 | 98.1 | 92.4 | 99.3 | 96.0 | 18.20 |
模型 | mAP/% | 耗时/ms |
---|---|---|
Light-YOLOv7FNR | 96.1 | 18.2 |
MNV3 | 89.8 | 262.0 |
Faster-RCNN | 94.9 | 140.0 |
YOLOv5 | 81.2 | 11.4 |
Tab. 4 Detection performance of different models on raw cotton impurity dataset
模型 | mAP/% | 耗时/ms |
---|---|---|
Light-YOLOv7FNR | 96.1 | 18.2 |
MNV3 | 89.8 | 262.0 |
Faster-RCNN | 94.9 | 140.0 |
YOLOv5 | 81.2 | 11.4 |
模型 | mAP% | 耗时/ms |
---|---|---|
DETR+ResNet-50 | 80.9 | 115.2 |
WNV3 | 81.4 | 145.9 |
YOLOv7 | 81.8 | 36.4 |
Light-YOLOv7-FNR | 82.5 | 29.8 |
YOLOv5 | 72.9 | 20.5 |
Faster-RCNN | 83.4 | 211.2 |
Tab. 5 Detection performance of different models on DWC dataset
模型 | mAP% | 耗时/ms |
---|---|---|
DETR+ResNet-50 | 80.9 | 115.2 |
WNV3 | 81.4 | 145.9 |
YOLOv7 | 81.8 | 36.4 |
Light-YOLOv7-FNR | 82.5 | 29.8 |
YOLOv5 | 72.9 | 20.5 |
Faster-RCNN | 83.4 | 211.2 |
1 | 徐爱武.近十年我国棉花生产量与消费量分析及建议[J].棉花科学, 2022, 44(4): 61-64. |
XU A W. Analysis and suggestion of cotton production and consumption in China in recent ten years [J]. Journal of Cotton Sciences, 2022, 44(4): 61-64. | |
2 | 刘伟刚.加强棉花质量管控,助力棉花质量提升[J].中国棉花加工, 2022(4): 31-32. |
LIU W G. Strengthening cotton quality control to help improve cotton quality [J]. China Cotton Processing, 2022(4): 31-32. | |
3 | 陈佳,王燕,白玉兰.我国棉花产业现状和产出效率分析及对策[J].棉花科学, 2022, 44(5): 3-10. |
CHEN J, WANG Y, BAI Y L. Current situation and output efficiency analysis and countermeasures of Chinese cotton industry [J]. Cotton Sciences, 2022, 44(5): 3-10. | |
4 | 王雪颖,吕慧捷,周鸿淼,等.我国棉花产业链发展现状及展望[J].农业与技术, 2022, 42(14): 139-142. |
WANG X Y, LYU H J, ZHOU H M, et al. Current situation and outlook of cotton industry chain development in China [J]. Agriculture and Technology, 2022, 42(14): 139-142. | |
5 | MATCHANOV R D, YULDASHEV A T, KULDOSHEV D A. Analysis of the degree of impurity of raw cotton when using a U-shaped receiving chamber in a combined cotton harvester [J]. IOP Conference Series: Earth and Environmental Science, 2022, 1112: 012029. |
6 | LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition [J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. |
7 | GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 580-587. |
8 | REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(6): 1137-1149. |
9 | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 779-788. |
10 | 谢团结,林贤伟,胡连信,等.基于改进YOLOv5算法的织物疵点检测系统[J].棉纺织技术, 2022, 50(11): 15-20. |
XIE T J, LIN X W, HU L X, et al. Fabric defect detection system based on improved YOLOv5 algorithm [J]. Cotton Textile Technology, 2022, 50(11): 15-20. | |
11 | ZHANG C, LI T, ZHANG W. The detection of impurity content in machine-picked seed cotton based on image processing and improved YOLOV4 [J]. Agronomy, 2022, 12(1): 66. |
12 | 徐健,胡道杰,刘秀平,等.基于改进型RFB-MobileNetV3的棉杂图像检测[J].纺织学报, 2023, 44(1): 179-187. |
XU J, HU D J, LIU X P, et al. Cotton impurity image detection based on improved RFB-MobileNetV3 [J]. Journal of Textile Research, 2023, 44(1): 179-187. | |
13 | MAJCHROWSKA S, MIKOLAJCZYK A, FERLIN M, et al. Waste detection in Pomerania: non-profit project for detecting waste in environment [EB/OL]. (2021-05-12) [2023-07-01]. . |
14 | WANG C-Y, BOCHKOVSKIY A, LIAO H-Y M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors [C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 7464-7475. |
15 | JIANG K, XIE J, YAN R, et al. An attention mechanism improved YOLOv7 object detection algorithm for duck count estimation [J]. Agriculture, 2022, 12(10): 1659. |
16 | ZHAO H, ZHANG H, ZHAO Y.YOLOv7-sea: object detection of maritime UAV images based on improved YOLOv7 [C]// Proceedings of the 2023 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2023: 233-238. |
17 | XIA Y, NGUYEN M, YAN W Q. A real-time kiwifruit detection based on improved YOLOv7 [C]// Proceedings of the 37th International Conference on Image and Vision Computing. Cham: Springe, 2023: 48-61. |
18 | ZHENG J, WU H, ZHANG H, et al. Insulator defect detection algorithm based on improved YOLOv7 [J]. Sensors, 2022, 22(22): 8801. |
19 | WANG R, LIANG F, MOU X, et al. Development of an improved YOLOv7-based model for detecting defects on strip steel surfaces [J]. Coatings, 2023, 13(3): 536. |
20 | CHEN J, KAO S, HE H, et al. Run, don’t walk: chasing higher FLOPS for faster neural networks [C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 12021-12031. |
21 | WENG K, CHU X, XU X, et al. EfficientRep: an efficient RepVGG-style convnets with hardware-aware neural network design [EB/OL]. (2023-02-01) [2023-07-01]. . |
22 | WANG C-Y, LIAO H-Y M, WU Y-H, et al. CSPNet: a new backbone that can enhance learning capability of CNN [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2020: 1571-1580. |
[1] | Yanjun LI, Yaodong GE, Qi WANG, Weiguo ZHANG, Chen LIU. Improved KLEIN algorithm and its quantum analysis [J]. Journal of Computer Applications, 2024, 44(9): 2810-2817. |
[2] | Wudan LONG, Bo PENG, Jie HU, Ying SHEN, Danni DING. Road damage detection algorithm based on enhanced feature extraction [J]. Journal of Computer Applications, 2024, 44(7): 2264-2270. |
[3] | Xiaohui CHENG, Yuntian HUANG, Ruifang ZHANG. Lightweight infrared road scene detection model based on multiscale and weighted coordinate attention [J]. Journal of Computer Applications, 2024, 44(6): 1927-1934. |
[4] | Xiaogang SONG, Dongdong ZHANG, Pengfei ZHANG, Li LIANG, Xinhong HEI. Real-time object detection algorithm for complex construction environments [J]. Journal of Computer Applications, 2024, 44(5): 1605-1612. |
[5] | Huantong GENG, Zhenyu LIU, Jun JIANG, Zichen FAN, Jiaxing LI. Embedded road crack detection algorithm based on improved YOLOv8 [J]. Journal of Computer Applications, 2024, 44(5): 1613-1618. |
[6] | Jun FENG, Jiankang BI, Yiru HUO, Jiakuan LI. PIPNet: lightweight asphalt pavement crack image segmentation network [J]. Journal of Computer Applications, 2024, 44(5): 1520-1526. |
[7] | Bin XIAO, Yun GAN, Min WANG, Xingpeng ZHANG, Zhaoxing WANG. Network abnormal traffic detection based on port attention and convolutional block attention module [J]. Journal of Computer Applications, 2024, 44(4): 1027-1034. |
[8] | Zijie HUANG, Yang OU, Degang JIANG, Cailing GUO, Bailin LI. Lightweight deep learning algorithm for weld seam surface quality detection of traction seat [J]. Journal of Computer Applications, 2024, 44(3): 983-988. |
[9] | Chenghanyu ZHANG, Yuzhe LIN, Chengke TAN, Junfan WANG, Yeting GU, Zhekang DONG, Mingyu GAO. New dish recognition network based on lightweight YOLOv5 [J]. Journal of Computer Applications, 2024, 44(2): 638-644. |
[10] | Yanran SHEN, Xin WEN, Jinhao ZHANG, Shuai ZHANG, Rui CAO, Baolu GAO. fMRI brain age prediction model with lightweight multi-scale convolutional network [J]. Journal of Computer Applications, 2024, 44(12): 3949-3957. |
[11] | Yong XIANG, Yanjun LI, Dingyun HUANG, Yu CHEN, Huiqin XIE. Differential and linear characteristic analysis of full-round Shadow algorithm [J]. Journal of Computer Applications, 2024, 44(12): 3839-3843. |
[12] | Ziqian CHEN, Kedi NIU, Zhongyuan YAO, Xueming SI. Review of blockchain lightweight technology applied to internet of things [J]. Journal of Computer Applications, 2024, 44(12): 3688-3698. |
[13] | Xin ZHAO, Xinjie LI, Jian XU, Buyun LIU, Xiang BI. Parallel medical image registration model based on convolutional neural network and Transformer [J]. Journal of Computer Applications, 2024, 44(12): 3915-3921. |
[14] | Cheng WANG, Yang WANG, Yingjiao RONG. YOLOv7-MSBP target location algorithm for character recognition of power distribution cabinet [J]. Journal of Computer Applications, 2024, 44(10): 3191-3199. |
[15] | Hao CHEN, Zhenping XIA, Cheng CHENG, Xing LIN-LI, Bowen ZHANG. Lightweight image super-resolution reconstruction network based on Transformer-CNN [J]. Journal of Computer Applications, 2024, 44(1): 292-299. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||