Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (7): 2245-2252.DOI: 10.11772/j.issn.1001-9081.2024070945

• Data science and technology • Previous Articles     Next Articles

Batch process quality prediction model using improved time-domain convolutional network with multi-head self-attention mechanism

Xiaoqiang ZHAO1,2,3(), Yongyong LIU1, Yongyong HUI1,2,3, Kai LIU1   

  1. 1.College of Electrical and Information Engineering,Lanzhou University of Technology,Lanzhou Gansu 730050,China
    2.Gansu Key Laboratory of Advanced Control for Industrial Processes (Lanzhou University of Technology),Lanzhou Gansu 730050,China
    3.National Experimental Teaching Center of Electrical and Control Engineering (Lanzhou University of Technology),Lanzhou Gansu 730050,China
  • Received:2024-07-08 Revised:2024-09-27 Accepted:2024-09-29 Online:2025-07-10 Published:2025-07-10
  • Contact: Xiaoqiang ZHAO
  • About author:ZHAO Xiaoqiang, born in 1969, Ph. D., professor. His research interests include fault diagnosis, image processing and data mining.
    LIU Yongyong, born in 1998, M. S. candidate. His research interests include fault diagnosis and quality prediction of batch processes.
    HUI Yongyong, born in 1992, Ph. D., associate professor. His research interests include fault diagnosis.
    LIU Kai, born in 1996, Ph. D. candidate. His research interests include fault detection and diagnosis of batch processes.
  • Supported by:
    National Natural Science Foundation of China(62263021)

基于改进时域卷积网络与多头自注意力机制的间歇过程质量预测模型

赵小强1,2,3(), 柳勇勇1, 惠永永1,2,3, 刘凯1   

  1. 1.兰州理工大学 电气工程与信息工程学院,兰州 730050
    2.甘肃省工业过程先进控制重点实验室(兰州理工大学),兰州 730050
    3.国家级电气与控制工程实验教学中心(兰州理工大学),兰州 730050
  • 通讯作者: 赵小强
  • 作者简介:赵小强(1969—),男,陕西岐山人,教授,博士,博士生导师,主要研究方向:故障诊断、图像处理与数据挖掘 xqzhao@lut.edu.cn
    柳勇勇(1998—),男,甘肃平凉人,硕士研究生,主要研究方向:间歇过程的故障诊断与质量预测
    惠永永(1992—),男,甘肃天水人,副教授,博士,主要研究方向:故障诊断
    刘凯(1996—),男,甘肃白银人,博士研究生,主要研究方向:间歇过程故障检测与诊断。
  • 基金资助:
    国家自然科学基金资助项目(62263021)

Abstract:

To improve the training stability of temporal convolutional networks (TCNs) under varying batch sizes and address the issue of low prediction accuracy caused by the inability of batch process quality prediction to capture long-term dependencies and global correlations, a Batch Group Normalization (BGN) and Mish activation function-enhanced residual structure TCN (BMTCN) combined with multi-head self-attention mechanism (MHSA) for batch process quality prediction (BMTCN-MHSA) was proposed. First, the three-dimensional data of the batch process was unfolded into a two-dimensional matrix form, and the data was normalized. Then, singular spectrum analysis (SSA) decomposition was introduced to reconstruct the data. Second, BGN was integrated into the residual part of the time-domain convolution to reduce the network model’s sensitivity to changes in batch size, the Mish activation function was introduced to enhance the model’s generalization ability, and the multi-head self-attention mechanism was utilized to associate and weight feature information from different positions in the sequence, thereby further extracting key feature information and interdependencies within the sequence, and better capturing the dynamic characteristics of the batch process. Finally, the model was validated using penicillin simulation experiment data. The experimental results show that compared to the TCN model, the BMTCN-MHSA model reduces the Mean Absolute Error (MAE) by 56.86%, the Mean Squared Error (MSE) by 48.80%, and achieves a coefficient of determination (R2) of 99.48%, indicating that the BMTCN-MHSA model improves the accuracy of quality prediction for batch processes.

Key words: batch process, quality prediction, Singular Spectrum Analysis (SSA), Time-domain Convolutional Network (TCN), Multi-Head Self-Attention mechanism (MHSA)

摘要:

为提高时域卷积网络(TCN)在批量大小变化时的训练稳定性,并解决间歇过程质量预测在捕捉长期依赖性和全局关联性上存在不足而导致的预测准确度不高的问题,提出一种基于批量组规范化(BGN)和Mish激活函数改进残差结构的TCN(BMTCN)与多头自注意力机制(MHSA)的间歇过程质量预测模型(BMTCN-MHSA)。首先,将间歇过程的三维数据展开为二维矩阵形式,并对数据进行归一化处理,再引入奇异谱分析法(SSA)分解重构数据;其次,在时域卷积的残差部分融入BGN以降低网络模型在批量大小变化时的敏感度,引入Mish激活函数以提高模型的泛化能力,并利用多头自注意力机制对序列中不同位置的特征信息进行关联和权重分配,从而进一步提取序列中的关键特征信息和相互依赖关系,进而更好地捕捉间歇过程的动态特征;最后,使用青霉素仿真实验数据进行实验验证。实验结果表明,相较于TCN模型,BMTCN-MHSA模型的平均绝对误差(MAE)降低了56.86%,均方误差(MSE)降低了48.80%,而决定系数(R2)达到了99.48%,这表明BMTCN-MHSA模型提高了间歇过程质量预测的准确性。

关键词: 间歇过程, 质量预测, 奇异谱分析法, 时域卷积网络, 多头自注意力机制

CLC Number: