Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (9): 2966-2974.DOI: 10.11772/j.issn.1001-9081.2024081187
• Multimedia computing and computer simulation • Previous Articles
Xuejin WANG, Leilei HUANG(), Zhenhui ZHONG
Received:
2024-08-21
Revised:
2024-10-19
Accepted:
2024-10-22
Online:
2024-11-07
Published:
2025-09-10
Contact:
Leilei HUANG
About author:
WANG Xuejin, born in 1989, Ph. D., associate professor. Her research interests include image processing, computer vision.Supported by:
通讯作者:
黄雷雷
作者简介:
王雪津(1989—),女,福建莆田人,副教授,博士,主要研究方向:图像处理、计算机视觉基金资助:
CLC Number:
Xuejin WANG, Leilei HUANG, Zhenhui ZHONG. Noise and semantic prior guided low-light image enhancement algorithm[J]. Journal of Computer Applications, 2025, 45(9): 2966-2974.
王雪津, 黄雷雷, 钟祯辉. 噪声与语义先验引导的低照度图像增强算法[J]. 《计算机应用》唯一官方网站, 2025, 45(9): 2966-2974.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024081187
算法 | 时间复杂度 | LOL-v1 | LOL-v2-real | LOL-v2-synthetic | SID | SMID | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
运算量/FLOPs | Params/106 | PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | |
DeepUPE[ | 21.10 | 1.020 | 14.38 | 0.446 | 13.27 | 0.452 | 15.08 | 0.623 | 17.01 | 0.604 | 23.91 | 0.690 |
Retinex[ | 587.47 | 0.840 | 16.75 | 0.550 | 15.46 | 0.562 | 17.13 | 0.798 | 16.48 | 0.578 | 22.83 | 0.684 |
EG[ | 61.01 | 114.350 | 17.48 | 0.652 | 18.21 | 0.617 | 16.57 | 0.734 | 17.23 | 0.543 | 22.62 | 0.674 |
RUAS[ | 0.85 | 0.003 | 18.23 | 0.721 | 18.37 | 0.723 | 16.55 | 0.652 | 18.44 | 0.581 | 25.88 | 0.744 |
KinD[ | 34.99 | 8.020 | 20.87 | 0.799 | 14.74 | 0.641 | 13.29 | 0.578 | 18.02 | 0.583 | 22.18 | 0.634 |
DRBN[ | 48.61 | 5.270 | 20.13 | 0.831 | 20.29 | 0.831 | 23.22 | 0.927 | 19.02 | 0.577 | 26.60 | 0.781 |
Restormer[ | 144.25 | 26.130 | 22.43 | 0.823 | 19.94 | 0.827 | 21.41 | 0.830 | 22.27 | 0.649 | 26.97 | 0.758 |
IPT[ | 6 887.00 | 115.310 | 16.27 | 0.504 | 19.80 | 0.813 | 18.30 | 0.811 | 20.53 | 0.561 | 27.03 | 0.783 |
Uformer[ | 12.03 | 5.290 | 16.36 | 0.771 | 18.82 | 0.771 | 19.66 | 0.871 | 18.54 | 0.577 | 27.20 | 0.792 |
HWMNET[ | 45.32 | 65.560 | 24.24 | 0.852 | 20.92 | 0.798 | 24.42 | 0.915 | — | — | — | — |
本文算法 | 29.59 | 5.320 | 24.71 | 0.843 | 21.93 | 0.845 | 24.85 | 0.916 | 22.77 | 0.619 | 28.92 | 0.802 |
Tab. 1 Performance comparison of different algorithms on paired datasets
算法 | 时间复杂度 | LOL-v1 | LOL-v2-real | LOL-v2-synthetic | SID | SMID | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
运算量/FLOPs | Params/106 | PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | |
DeepUPE[ | 21.10 | 1.020 | 14.38 | 0.446 | 13.27 | 0.452 | 15.08 | 0.623 | 17.01 | 0.604 | 23.91 | 0.690 |
Retinex[ | 587.47 | 0.840 | 16.75 | 0.550 | 15.46 | 0.562 | 17.13 | 0.798 | 16.48 | 0.578 | 22.83 | 0.684 |
EG[ | 61.01 | 114.350 | 17.48 | 0.652 | 18.21 | 0.617 | 16.57 | 0.734 | 17.23 | 0.543 | 22.62 | 0.674 |
RUAS[ | 0.85 | 0.003 | 18.23 | 0.721 | 18.37 | 0.723 | 16.55 | 0.652 | 18.44 | 0.581 | 25.88 | 0.744 |
KinD[ | 34.99 | 8.020 | 20.87 | 0.799 | 14.74 | 0.641 | 13.29 | 0.578 | 18.02 | 0.583 | 22.18 | 0.634 |
DRBN[ | 48.61 | 5.270 | 20.13 | 0.831 | 20.29 | 0.831 | 23.22 | 0.927 | 19.02 | 0.577 | 26.60 | 0.781 |
Restormer[ | 144.25 | 26.130 | 22.43 | 0.823 | 19.94 | 0.827 | 21.41 | 0.830 | 22.27 | 0.649 | 26.97 | 0.758 |
IPT[ | 6 887.00 | 115.310 | 16.27 | 0.504 | 19.80 | 0.813 | 18.30 | 0.811 | 20.53 | 0.561 | 27.03 | 0.783 |
Uformer[ | 12.03 | 5.290 | 16.36 | 0.771 | 18.82 | 0.771 | 19.66 | 0.871 | 18.54 | 0.577 | 27.20 | 0.792 |
HWMNET[ | 45.32 | 65.560 | 24.24 | 0.852 | 20.92 | 0.798 | 24.42 | 0.915 | — | — | — | — |
本文算法 | 29.59 | 5.320 | 24.71 | 0.843 | 21.93 | 0.845 | 24.85 | 0.916 | 22.77 | 0.619 | 28.92 | 0.802 |
算法 | DICM | LIME | MEF | NPE | ||||
---|---|---|---|---|---|---|---|---|
BRISQUE | NIQE | BRISQUE | NIQE | BRISQUE | NIQE | BRISQUE | NIQE | |
Zero-DCE[ | 27.56 | 4.58 | 20.44 | 5.82 | 17.32 | 4.93 | 20.72 | 4.53 |
KinD[ | 48.72 | 5.15 | 39.91 | 5.03 | 49.94 | 5.47 | 36.85 | 4.98 |
RUAS[ | 39.75 | 5.25 | 27.59 | 4.26 | 3.83 | 47.85 | 5.53 | |
PairLIE[ | 33.31 | 4.03 | 25.32 | 4.58 | 27.53 | 4.06 | 28.27 | 4.18 |
HWMNET[ | 35.34 | 4.75 | 26.46 | 5.07 | 28.56 | 4.32 | 32.68 | 4.25 |
本文算法 | 4.18 | 25.59 | 4.09 |
Tab. 2 Performance comparison of different algorithms on unpaired datasets
算法 | DICM | LIME | MEF | NPE | ||||
---|---|---|---|---|---|---|---|---|
BRISQUE | NIQE | BRISQUE | NIQE | BRISQUE | NIQE | BRISQUE | NIQE | |
Zero-DCE[ | 27.56 | 4.58 | 20.44 | 5.82 | 17.32 | 4.93 | 20.72 | 4.53 |
KinD[ | 48.72 | 5.15 | 39.91 | 5.03 | 49.94 | 5.47 | 36.85 | 4.98 |
RUAS[ | 39.75 | 5.25 | 27.59 | 4.26 | 3.83 | 47.85 | 5.53 | |
PairLIE[ | 33.31 | 4.03 | 25.32 | 4.58 | 27.53 | 4.06 | 28.27 | 4.18 |
HWMNET[ | 35.34 | 4.75 | 26.46 | 5.07 | 28.56 | 4.32 | 32.68 | 4.25 |
本文算法 | 4.18 | 25.59 | 4.09 |
消融模块 | LOL-v1 | LOL-v2-real | LOL-v2-synthetic | SID | SMID | |||||
---|---|---|---|---|---|---|---|---|---|---|
PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | |
W/O ICGFE | 18.95 | 0.775 | 18.15 | 0.724 | 21.09 | 0.873 | 20.04 | 0.582 | 23.33 | 0.712 |
W/O ICLFE | 23.86 | 0.825 | 19.17 | 0.785 | 23.67 | 0.919 | 22.03 | 0.601 | 26.42 | 0.755 |
W/O Lcolor | 24.52 | 0.842 | 21.38 | 0.841 | 24.23 | 0.921 | 22.55 | 0.629 | 28.19 | 0.807 |
W/O NPIC | 22.09 | 0.823 | 19.52 | 0.756 | 21.98 | 0.892 | 21.01 | 0.595 | 27.99 | 0.792 |
本文算法 | 24.71 | 0.843 | 21.93 | 0.845 | 24.85 | 0.916 | 22.77 | 0.619 | 28.92 | 0.802 |
Tab. 3 Results of ablation experiments
消融模块 | LOL-v1 | LOL-v2-real | LOL-v2-synthetic | SID | SMID | |||||
---|---|---|---|---|---|---|---|---|---|---|
PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | |
W/O ICGFE | 18.95 | 0.775 | 18.15 | 0.724 | 21.09 | 0.873 | 20.04 | 0.582 | 23.33 | 0.712 |
W/O ICLFE | 23.86 | 0.825 | 19.17 | 0.785 | 23.67 | 0.919 | 22.03 | 0.601 | 26.42 | 0.755 |
W/O Lcolor | 24.52 | 0.842 | 21.38 | 0.841 | 24.23 | 0.921 | 22.55 | 0.629 | 28.19 | 0.807 |
W/O NPIC | 22.09 | 0.823 | 19.52 | 0.756 | 21.98 | 0.892 | 21.01 | 0.595 | 27.99 | 0.792 |
本文算法 | 24.71 | 0.843 | 21.93 | 0.845 | 24.85 | 0.916 | 22.77 | 0.619 | 28.92 | 0.802 |
算法 | AP@0.5 | AP@0.5:0.95 |
---|---|---|
Zero-DCE[ | 72.22 | 33.32 |
EG[ | 70.21 | 32.02 |
RUAS[ | 71.57 | 32.62 |
DRBN[ | 68.35 | 30.89 |
KinD[ | 70.14 | 32.19 |
Restormer[ | 71.45 | 33.02 |
PairLIE[ | 68.13 | 30.85 |
HWMNET[ | 71.32 | 32.98 |
本文算法 | 72.61 | 33.72 |
Tab. 4 Detection performance of different LLIE algorithms on DARK FACE dataset
算法 | AP@0.5 | AP@0.5:0.95 |
---|---|---|
Zero-DCE[ | 72.22 | 33.32 |
EG[ | 70.21 | 32.02 |
RUAS[ | 71.57 | 32.62 |
DRBN[ | 68.35 | 30.89 |
KinD[ | 70.14 | 32.19 |
Restormer[ | 71.45 | 33.02 |
PairLIE[ | 68.13 | 30.85 |
HWMNET[ | 71.32 | 32.98 |
本文算法 | 72.61 | 33.72 |
算法 | Bicycle | Boat | Bottle | bus | Car | Cat | Chair | Cup | Dog | Motor | People | Table | Mean |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
YOLOv7+Zero-DCE[ | 75.8 | 66.5 | 66.4 | 84.9 | 77.2 | 56.3 | 53.8 | 59.1 | 63.5 | 64.1 | 68.3 | 46.3 | 65.2 |
YOLOv7+EG[ | 70.6 | 64.5 | 67.1 | 83.6 | 76.8 | 53.7 | 58.9 | 57.9 | 62.2 | 59.1 | 69.2 | 43.5 | 63.9 |
YOLOv7+RUAS[ | 72.1 | 62.3 | 66.3 | 75.4 | 77.1 | 55.9 | 60.9 | 61.5 | 60.2 | 61.5 | 69.4 | 46.8 | 64.1 |
YOLOv7+DRBN[ | 69.8 | 65.3 | 62.9 | 82.5 | 73.1 | 50.8 | 57.3 | 55.1 | 61.3 | 58.8 | 67.7 | 40.9 | 62.1 |
YOLOv7+KinD[ | 72.3 | 66.2 | 58.8 | 83.2 | 74.2 | 55.3 | 61.9 | 61.2 | 62.9 | 63.1 | 69.7 | 45.3 | 64.5 |
YOLOv7+Restormer[ | 76.3 | 65.2 | 63.9 | 83.6 | 75.5 | 56.8 | 54.8 | 58.3 | 64.3 | 62.9 | 67.3 | 43.8 | 64.3 |
YOLOv7+PairLIE[ | 73.5 | 63.9 | 66.1 | 84.8 | 78.3 | 54.8 | 60.3 | 55.9 | 61.6 | 60.8 | 68.2 | 42.6 | 64.2 |
YOLOv7+HWMNET[ | 75.6 | 64.4 | 65.2 | 79.9 | 76.5 | 55.3 | 52.9 | 57.6 | 61.8 | 62.3 | 68.9 | 43.2 | 63.6 |
YOLOv7+本文算法 | 76.1 | 67.2 | 63.9 | 85.9 | 76.9 | 57.5 | 56.9 | 59.3 | 66.2 | 64.8 | 69.5 | 44.1 | 65.7 |
Tab. 5 Detection performance comparison of different LLIE algorithms on ExDark dataset
算法 | Bicycle | Boat | Bottle | bus | Car | Cat | Chair | Cup | Dog | Motor | People | Table | Mean |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
YOLOv7+Zero-DCE[ | 75.8 | 66.5 | 66.4 | 84.9 | 77.2 | 56.3 | 53.8 | 59.1 | 63.5 | 64.1 | 68.3 | 46.3 | 65.2 |
YOLOv7+EG[ | 70.6 | 64.5 | 67.1 | 83.6 | 76.8 | 53.7 | 58.9 | 57.9 | 62.2 | 59.1 | 69.2 | 43.5 | 63.9 |
YOLOv7+RUAS[ | 72.1 | 62.3 | 66.3 | 75.4 | 77.1 | 55.9 | 60.9 | 61.5 | 60.2 | 61.5 | 69.4 | 46.8 | 64.1 |
YOLOv7+DRBN[ | 69.8 | 65.3 | 62.9 | 82.5 | 73.1 | 50.8 | 57.3 | 55.1 | 61.3 | 58.8 | 67.7 | 40.9 | 62.1 |
YOLOv7+KinD[ | 72.3 | 66.2 | 58.8 | 83.2 | 74.2 | 55.3 | 61.9 | 61.2 | 62.9 | 63.1 | 69.7 | 45.3 | 64.5 |
YOLOv7+Restormer[ | 76.3 | 65.2 | 63.9 | 83.6 | 75.5 | 56.8 | 54.8 | 58.3 | 64.3 | 62.9 | 67.3 | 43.8 | 64.3 |
YOLOv7+PairLIE[ | 73.5 | 63.9 | 66.1 | 84.8 | 78.3 | 54.8 | 60.3 | 55.9 | 61.6 | 60.8 | 68.2 | 42.6 | 64.2 |
YOLOv7+HWMNET[ | 75.6 | 64.4 | 65.2 | 79.9 | 76.5 | 55.3 | 52.9 | 57.6 | 61.8 | 62.3 | 68.9 | 43.2 | 63.6 |
YOLOv7+本文算法 | 76.1 | 67.2 | 63.9 | 85.9 | 76.9 | 57.5 | 56.9 | 59.3 | 66.2 | 64.8 | 69.5 | 44.1 | 65.7 |
[1] | 姜雪松,姚鸿勋. 夜晚图像增强方法综述[J]. 智能计算机与应用, 2020, 10(3): 394-403. |
JIANG X S, YAO H X. Summary of nighttime image enhancement methods [J]. Intelligent Computer and Applications, 2020, 10(3): 394-403. | |
[2] | LORE K G, AKINTAYO A, SARKAR S. LLNet: a deep auto encoder approach to natural low-light image enhancement [J]. Pattern Recognition, 2017, 61: 650-662. |
[3] | LI C, GUO C, HAN L, et al. Low-light image and video enhancement using deep learning: a survey [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(12): 9396-9416. |
[4] | ZHENG S, MA Y, PAN J, et al. Low-light image and video enhancement: a comprehensive survey and beyond [EB/OL]. [2024-09-30]. . |
[5] | ABDULLAH-AL-WADUD M, KABIR M H, DEWAN M A A, et al. A dynamic histogram equalization for image contrast enhancement [J]. IEEE Transactions on Consumer Electronics, 2007, 53(2): 593-600. |
[6] | WANG S, ZHENG J, HU H M, et al. Naturalness preserved enhancement algorithm for non-uniform illumination images [J]. IEEE Transactions on Image Processing, 2013, 22(9): 3538-3548. |
[7] | FU X, LIAO Y, ZENG D, et al. A probabilistic method for image enhancement with simultaneous illumination and reflectance estimation [J]. IEEE Transactions on Image Processing, 2015, 24(12): 4965-4977. |
[8] | LAND E H, McCANN J J. Lightness and Retinex theory [J]. Journal of the Optical Society of America, 1971, 61(1): 1-11. |
[9] | PARK S, YU S, MOON B, et al. Low-light image enhancement using variational optimization-based Retinex model [J]. IEEE Transactions on Consumer Electronics, 2017, 63(2): 178-184. |
[10] | WANG X, HUANG L, CHEN H, et al. Benchmark dataset and pair-wise ranking method for quality evaluation of night-time image enhancement [J]. IEEE Transactions on Multimedia, 2024, 26: 9436-9449. |
[11] | SHI J, SHAO F, TIAN C, et al. Progressive bidirectional feature extraction and enhancement network for quality evaluation of night-time images [J]. IEEE Transactions on Multimedia, 2024, 26: 1690-1705. |
[12] | 黄淑英,黎为,杨勇,等. 基于照度图引导的低照度图像增强网络[J]. 计算机辅助设计与图形学学报, 2024, 36(1): 92-101. |
HUANG S Y, LI W, YANG Y, et al. Low-light image enhancement network guided by illuminance map [J]. Journal of Computer-Aided Design and Computer Graphics, 2024, 36(1): 92-101. | |
[13] | GUO C, LI C, GUO J, et al. Zero-reference deep curve estimation for low-light image enhancement [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 1777-1786. |
[14] | YANG W, WANG S, FANG Y, et al. From fidelity to perceptual quality: a semi-supervised approach for low-light image enhancement [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 3060-3069. |
[15] | 牛玉贞,陈铭铭,李悦洲,等. 基于任务解耦的低照度图像增强方法[J]. 电子学报, 2024, 52(1): 34-45. |
NIU Y Z, CHEN M M, LI Y Z, et al. Task decoupling guided low-light image enhancement [J]. Acta Electronica Sinica, 2024, 52(1): 34-45. | |
[16] | LIU R, MA L, ZHANG J, et al. Retinex-inspired unrolling with cooperative prior architecture search for low-light image enhancement [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 10556-10565. |
[17] | JIANG Y, GONG X, LIU D, et al. EnlightenGAN: deep light enhancement without paired supervision [J]. IEEE Transactions on Image Processing, 2021, 30: 2340-2349. |
[18] | WU W H, WENG J, ZHANG P P, et al. URetinex-Net: Retinex-based deep unfolding network for low-light image enhancement[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 5891-5900. |
[19] | 王瑞尧,岳雪亭,周志青,等. 最大差值图决策的低照度图像自适应增强算法[J]. 计算机应用, 2020, 40(4): 1164-1170. |
WANG R Y, YUE X T, ZHOU Z Q, et al. Adaptive enhancement algorithm of low illumination image based on maximum difference image decision [J]. Journal of Computer Applications, 2020, 40(4): 1164-1170. | |
[20] | JIN Y, YANG W, TAN R T. Unsupervised night image enhancement: when layer decomposition meets light-effects suppression [C]// Proceedings of the 2022 European Conference on Computer Vision, LNCS 13697. Cham: Springer, 2022: 404-421. |
[21] | FU Z, YANG Y, TU X, et al. Learning a simple low-light image enhancer from paired low-light instances [C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 22252-22261. |
[22] | FAN M, WANG W, YANG W, et al. Integrating semantic segmentation and Retinex model for low-light image enhancement[C]// Proceedings of the 2020 ACM International Conference on Multimedia. New York: ACM, 2020: 2317-2325. |
[23] | ZHENG S, GUPTA G. Semantic-guided zero-shot learning for low-light image/video enhancement [C]// Proceedings of the 2022 IEEE/CVF Winter Conference on Applications of Computer Vision Workshops. Piscataway: IEEE, 2022: 581-590. |
[24] | HOU Y, YANG B. Semantic attention guided low-light image enhancement with multi-scale perception [J]. Journal of Visual Communication and Image Representation, 2024, 103: No.104242. |
[25] | CHEN H, WANG Y, GUO T, et al. Pre-trained image processing Transformer [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 12294-12305. |
[26] | WANG Z, CUN X, BAO J, et al. Uformer: a general U-shaped Transformer for image restoration [C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 17662-17672. |
[27] | ZHANG Z, SUN W, MIN X, et al. A no-reference deep learning quality assessment method for super-resolution images based on frequency maps [C]// Proceedings of the 2022 IEEE International Symposium on Circuits and Systems. Piscataway: IEEE, 2022: 3170-3174. |
[28] | PAN Z, YUAN F, LEI J, et al. VCRNet: visual compensation restoration network for no-reference image quality assessment [J]. IEEE Transactions on Image Processing, 2022, 31: 1613-1627. |
[29] | MA K, DUANMU Z, WU Q, et al. Waterloo exploration database: new challenges for image quality assessment models [J]. IEEE Transactions on Image Processing, 2017, 26(2): 1004-1016. |
[30] | XU B, WANG N, CHEN T, et al. Empirical evaluation of rectified activations in convolutional network [EB/OL]. [2024-09-30]. . |
[31] | DABOV K, FOI A, KATKOVNIK V, et al. Image denoising with block-matching and 3D filtering [C]// Proceedings of the SPIE 6064, Image Processing: Algorithms and Systems, Neural Networks, and Machine Learning. Bellingham, WA: SPIE, 2006: No.606414. |
[32] | WANG J, SUN K, CHENG T, et al. Deep high-resolution representation learning for visual recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(10): 3349-3364. |
[33] | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [EB/OL]. [2024-09-12]. . |
[34] | WEI C, WANG W, YANG W, et al. Deep Retinex decomposition for low-light enhancement [C]// Proceedings of the 2018 British Machine Vision Conference. Durham: BMVA Press, 2018: No.451. |
[35] | YANG W, WANG W, HUANG H, et al. Sparse gradient regularized deep Retinex network for robust low-light image enhancement [J]. IEEE Transactions on Image Processing, 2021, 30: 2072-2086. |
[36] | CHEN C, CHEN Q, XU J, et al. Learning to see in the dark [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 3291-3300. |
[37] | CHEN C, CHEN Q, DO M, et al. Seeing motion in the dark [C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 3184-3193. |
[38] | LEE CHULWOO, LEE CHUL, KIM C S. Contrast enhancement based on layered difference representation of 2D histograms [J]. IEEE Transactions on Image Processing, 2013, 22(12): 5372-5384. |
[39] | GUO X, LI Y, LING H. LIME: low-light image enhancement via illumination map estimation [J]. IEEE Transactions on Image Processing, 2017, 26(2): 982-993. |
[40] | MA K, ZENG K, WANG Z. Perceptual quality assessment for multi-exposure image fusion [J]. IEEE Transactions on Image Processing, 2015, 24(11): 3345-3356. |
[41] | YAN Z, ZHANG H, WANG B, et al. Automatic photo adjustment using deep neural networks [J]. ACM Transactions on Graphics, 2016, 35(2): No.11. |
[42] | KINGMA D P, BA J L. Adam: a method for stochastic optimization [EB/OL]. [2024-09-07]. . |
[43] | MITTAL A, SOUNDARARAJAN R, BOVIK A C, et al. Making a “completely blind” image quality analyzer [J]. IEEE Signal Processing Letters, 2013, 20(3): 209-212. |
[44] | MITTAL A, MOORTHY A K, BOVIK A C. No-reference image quality assessment in the spatial domain [J]. IEEE Transactions on Image Processing, 2012, 21(12): 4695-4708. |
[45] | ZHANG Y, ZHANG J, GUO X. Kindling the darkness: a practical low-light image enhancer [C]// Proceedings of the 27th ACM International Conference on Multimedia. New York: ACM, 2019: 1632-1640. |
[46] | WANG R, ZHANG Q, FU C W, et al. Underexposed photo enhancement using deep illumination estimation [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 6842-6850. |
[47] | ZAMIR S W, ARORA A, KHAN S, et al. Restormer: efficient Transformer for high-resolution image restoration [C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 5718-5729. |
[48] | FAN C M, LIU T J, LIU K H. Half wavelet attention on M-Net+ for low-light image enhancement [C]// Proceedings of the 2022 IEEE International Conference on Image Processing. Piscataway: IEEE, 2022: 3878-3882. |
[49] | WANG C Y, BOCHKOVSKIY A, LIAO H Y M, YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors [C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 7464-7475. |
[50] | YANG W, YUAN Y, REN W, et al. Advancing image understanding in poor visibility environments: a collective benchmark study [J]. IEEE Transactions on Image Processing, 2020, 29: 5737-5752. |
[51] | LOH Y P, CHAN C S. Getting to know low-light images with the Exclusively Dark dataset [J]. Computer Vision and Image Understanding, 2019, 178: 30-42. |
[1] | Ying HUANG, Shengmei GAO, Guang CHEN, Su LIU. Low-light image enhancement network combining signal-to-noise ratio guided dual-branch structure and histogram equalization [J]. Journal of Computer Applications, 2025, 45(6): 1971-1979. |
[2] | Mengyuan HUANG, Kan CHANG, Mingyang LING, Xinjie WEI, Tuanfa QIN. Progressive enhancement algorithm for low-light images based on layer guidance [J]. Journal of Computer Applications, 2024, 44(6): 1911-1919. |
[3] | ZHANG Susu, NI Jiancheng, ZHOU Zili, HOU Jie. Image generation based on semantic labels and noise prior [J]. Journal of Computer Applications, 2020, 40(5): 1431-1439. |
[4] | PEI Pei, LI Caiwei, LYU Bote. Improved migration operator biogeography-based optimization algorithm and its application in PID parameter tuning [J]. Journal of Computer Applications, 2020, 40(3): 728-734. |
[5] | ZHU Jie, ZHANG Wenyi, XUE Fei. Storage location assignment optimization of stereoscopic warehouse based on genetic simulated annealing algorithm [J]. Journal of Computer Applications, 2020, 40(1): 284-291. |
[6] | JIN Tao, DONG Xiucheng, LI Yining, REN Lei, FAN Peipei. Optimization of fractional PID controller parameters based on improved PSO algorithm [J]. Journal of Computer Applications, 2019, 39(3): 796-801. |
[7] | KONG Yazhou, ZHANG Liancheng, WANG Zhenxing. Address hopping proactive defense model in IPv6 based on sliding time window [J]. Journal of Computer Applications, 2018, 38(7): 1936-1940. |
[8] | CHEN Ping, GONG Xun. Face alignment method based on scale self-adaption and incremental learning [J]. Journal of Computer Applications, 2018, 38(7): 2064-2069. |
[9] | QIAN Tanghui, LUO Zhiqing, LI Guojia, LI Yingyun, LI Xiankai. Scale adaptive improvement of kernel correlation filter tracking algorithm [J]. Journal of Computer Applications, 2017, 37(3): 811-816. |
[10] | WANG Haijun, LI Jiaxun, ZHAO Haitao, WANG Shan. Anti-jamming network architecture self-adaption technology based on cooperation and cognition [J]. Journal of Computer Applications, 2016, 36(9): 2367-2373. |
[11] | DONG Yuehua, LIU Li. Data discretization algorithm based on adaptive improved particle swarm optimization [J]. Journal of Computer Applications, 2016, 36(1): 188-193. |
[12] | CHEN Xianyi, ZHAO Liping, CHEN Zhizhong, LIN Tao. 2D intra string copy for screen content coding [J]. Journal of Computer Applications, 2015, 35(9): 2640-2647. |
[13] | LONG Peng, LU Huaxiang. Weighted guided image filtering algorithm using Laplacian-of-Gaussian edge detector [J]. Journal of Computer Applications, 2015, 35(9): 2661-2665. |
[14] | QIAO Ying, HE Yucheng, ZHOU Lin. Novel channel-adaptive coded cooperation scheme [J]. Journal of Computer Applications, 2015, 35(5): 1218-1223. |
[15] | LI Guoliang, WEI Zhenhua, XU Lei. Improved artificial bee colony algorithm using phased search [J]. Journal of Computer Applications, 2015, 35(4): 1057-1061. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||