[1] PODLUBNY I. Fractional-order systems and PIλDμ controllers[J]. IEEE Transactions on Automatic Control, 1999, 44(1):208-214. [2] PETRAS I. The fractional-order controllers:methods for their synthesis and application[EB/OL].[2018-07-03]. https://arxiv.org/pdf/math/0004064v1.pdf. [3] MONJE C A, CALDERON A J, VINAGRE B M, et al. On fractional PIλ controllers:some tuning rules for robustness to plant uncertainties[J]. Nonlilnear Dynamics, 2004, 38(1/2/3/4):369-381. [4] 李新波,付云博,姜良旭,等.神经网络分数阶PIμ Dλ在压电叠堆控制中的应用[J].光学精密工程,2015,23(12):3439-3445.(LI X B, FU Y B, JIANG L X, et al. Application of neural network fractional order PIμDλ to piezoelectric stack control[J]. Optics and Precision Engineering, 2015, 23(12):3439-3445.) [5] ZHANG F, YANG C, ZHOU X, et al. Fractional-order PID controller tuning using continuous state transition algorithm[J]. Neural Computing and Applications, 2018, 29(10):795-804. [6] 张欣,仲崇权.基于量子粒子群优化设计的分数阶PIλDμ控制器[J].控制工程,2018,25(3):493-498.(ZHANG X, ZHONG C Q. Fractional order PIλDμ controller design based on quantum particle swarm optimization[J]. Control Engineering of China, 2018, 25(3):493-498.) [7] AGHABABA M P. Optimal design of fractional-order PID controller for five bar linkage robot using a new particle swarm optimization algorithm[J]. Soft Computing, 2016, 20(10):4055-4067. [8] DAS S, PAN I, DAS S. Multi-objective LQR with optimum weight selection to design FOPID controllers for delayed fractional order processes[J]. ISA Transactions, 2015, 58:35-49. [9] 高嵩,王磊,陈超波,等.一种改进粒子群优化的分数阶PID参数整定[J].控制工程,2017,24(10):2010-2015.(GAO S, WANG L, CHEN C B, et al. An improved particle swarm optimization algorithm for fractional order PID parameter tuning[J]. Control Engineering of China, 2017, 24(10):2010-2015.) [10] 滕志军,吕金玲,郭力文,等.基于动态加速因子的粒子群优化算法研究[J].微电子学与计算机,2017,34(12):125-129.(TENG Z J, LYU J L, GUO L W, et al. Research on particle swarm optimization based on dynamic acceleration coefficients[J]. Microelectronics and Computer, 2017, 34(12):125-129.) [11] ZHANG S, MA S, SONG N, et al. Fuzzy sliding mode control based on PSO for magnetic levitation positioning stage[J]. IEEE Transactions on Electrical and Electronic Engineering, 2018, 13(10):1492-1500. [12] LIU Z-H, WEI H-L, ZHONG Q-C, et al. Parameter estimation for VSI-fed PMSM based on a dynamic PSO with learning strategies[J]. IEEE Transactions on Power Electronics, 2017, 32(4):3154-3165. [13] KHIABANI A G, BABAZADEH R. Design of robust fractional-order lead-lag controller for uncertain systems[J]. IET Control Theory and Applications, 2016, 10(18):2447-2455. [14] OUSTALOUP A, LEVRON F, MATHIEU B, et al. Frequency-band complex noninteger differentiator:characterization and synthesis[J]. IEEE Transactions on Circuit and Systems-I:Fundamental Theory and Applications, 2000, 47(1):25-39. [15] 麻荣永,杨磊磊,张智超.基于粒子迭代位移和轨迹的粒子群算法C1、C2参数特性分析[J].数学计算,2013,2(4):109-115. (MA R Y, YANG L L, ZHANG Z C. Analysis the characteristic of C1, C2 based on the PSO of iterative shift and trajectory of particle[J]. Mathematical Computation, 2013, 2(4):109-115.) [16] 赵延龙,滑楠,于振华.基于二次搜索的改进粒子群算法[J].计算机应用,2017,37(9):2541-2546.(ZHAO Y L, HUA N, YU Z H. Improved particle swarm optimization algorithm based on twice search[J]. Journal of Computer Applications, 2017, 37(9):2541-2546.) [17] SHAO Z, KLAVZAR S, LI Z, et al. On the signed Roman k-domination:complexity and thin torus graphs[J]. Discrete Applied Mathematics, 2017, 233:175-186. [18] 赵远东,方正华.带有权重函数学习因子的粒子群算法[J].计算机应用,2013,33(8):2265-2268.(ZHAO Y D, FANG Z H. Particle swarm optimization algorithm with weight function's learning factor[J]. Journal of Computer Applications, 2013, 33(8):2265-2268.) |