[1] |
ZHANG Y, WEI X S, ZHOU B, et al. Bag of tricks for long-tailed visual recognition with deep convolutional neural networks [C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2021: 3447-3455.
|
[2] |
WANG C, LI Z, MO X, et al. Exploiting unfairness with meta-Set learning for chronological age estimation [J]. IEEE Transactions on Information Forensics and Security, 2023, 18: 5678-5690.
|
[3] |
史燕燕,史殿习,乔子腾,等. 小样本目标检测研究综述[J]. 计算机学报, 2023, 46(8): 1753-1780.
|
|
SHI Y Y, SHI D X, QIAO Z T, et al. A survey on recent advances in few-shot object detection[J]. Chinese Journal of Computers, 2023, 46(8): 1753-1780.
|
[4] |
SUN B, LI B, CAI S, et al. FSCE: few-shot object detection via contrastive proposal encoding [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 7348-7358.
|
[5] |
WU A, HAN Y, ZHU L, et al. Universal-prototype enhancing for few-shot object detection [C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 9547-9556.
|
[6] |
CHEN H, WANG Y, WANG G, et al. LSTD: a low-shot transfer detector for object detection [C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2018: 2836-2843.
|
[7] |
SHANGGUAN Z, SEITA D, ROSTAMI M. Cross-domain multi-modal few-shot object detection via rich text [C]// Proceedings of the 2025 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2025: 6570-6580.
|
[8] |
FU Y, WANG Y, PAN Y, et al. Cross-domain few-shot object detection via enhanced open-set object detector [C]// Proceedings of the 2024 European Conference on Computer Vision, LNCS 15116. Cham: Springer, 2025: 247-264.
|
[9] |
CAO Y, WANG J, JIN Y, et al. Few-shot object detection via association and discrimination [C]// Proceedings of the 35th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2021: 16570-16581.
|
[10] |
ZHANG S, WANG L, MURRAY N, et al. Kernelized few-shot object detection with efficient integral aggregation [C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 19185-19194.
|
[11] |
KANG B, LIU Z, WANG X, et al. Few-shot object detection via feature reweighting [C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 8419-8428.
|
[12] |
李鸿天,史鑫昊,潘卫国,等. 融合多尺度和注意力机制的小样本目标检测[J].计算机应用, 2024, 44(5):1437-1444.
|
|
LI H T, SHI X H, PAN W G, et al. Few-shot object detection via fusing multi-scale and attention mechanism [J]. Journal of Computer Applications, 2024, 44(5):1437-1444.
|
[13] |
CHEN T I, LIU Y C, SU H T, et al. Dual-awareness attention for few-shot object detection [J]. IEEE Transactions on Multimedia, 2023, 25: 291-301.
|
[14] |
LI B, WANG C, REDDY P, et al. AirDet: few-shot detection without fine-tuning for autonomous exploration [C]// Proceedings of the 2022 European Conference on Computer Vision, LNCS 13699. Cham: Springer, 2022: 427-444.
|
[15] |
ZHANG X, CHEN Z, ZHANG J, et al. Learning general and specific embedding with Transformer for few-shot object detection[J]. International Journal of Computer Vision, 2025, 133(2): 968-984.
|
[16] |
LI W, ZHOU J, LI X, et al. InfRS: incremental few-shot object detection in remote sensing images [J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: No.5644314.
|
[17] |
MA J, NIU Y, XU J, et al. DiGeo: discriminative geometry-aware learning for generalized few-shot object detection [C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 3208-3218.
|
[18] |
CHEN H, WANG Q, XIE K, et al. MPF-Net: multi-projection filtering network for few-shot object detection [J]. Applied Intelligence, 2024, 54(17/18): 7777-7792.
|
[19] |
LI B, YANG B, LIU C, et al. Beyond max-margin: class margin equilibrium for few-shot object detection [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 7359-7368.
|
[20] |
李新叶,侯晔凝,孔英会,等. 结合特征融合与增强注意力的少样本目标检测[J]. 计算机应用, 2024, 44(3):745-751.
|
|
LI X Y, HOU Y N, KONG Y H, et al. Few-shot object detection combining feature fusion and enhanced attention [J]. Journal of Computer Applications, 2024, 44(3):745-751.
|
[21] |
HAN G, MA J, HUANG S, et al. Few-shot object detection with fully cross-Transformer [C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 5321-5330.
|
[22] |
CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with Transformers [C]// Proceedings of the 2020 European Conference on Computer Vision, LNCS 12346. Cham: Springer, 2020: 213-229.
|
[23] |
FAN Q, ZHUO W, TANG C K, et al. Few-shot object detection with attention-RPN and multi-relation detector [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 4012-4021.
|
[24] |
SHANGGUAN Z, ROSTAMI M. Improved region proposal network for enhanced few-shot object detection [J]. Neural Networks, 2024, 180: No.106699.
|
[25] |
CHOI T M, KIM J H. Incremental few-shot object detection via simple fine-tuning approach [C]// Proceedings of the 2023 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2023: 9289-9295.
|
[26] |
WANG X, HUANG T E, DARRELL T, et al. Frustratingly simple few-shot object detection [C]// Proceedings of the 37th International Conference on Machine Learning. New York: JMLR.org, 2020: 9919-9928.
|
[27] |
HU H, BAI S, LI A, et al. Dense relation distillation with context-aware aggregation for few-shot object detection [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 10180-10189.
|
[28] |
QIAO L, ZHAO Y, LI Z, et al. DeFRCN: decoupled Faster R-CNN for few-shot object detection [C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 8661-8670.
|
[29] |
WANG Y X, RAMANAN D, HEBERT M. Meta-learning to detect rare objects [C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 9924-9933.
|
[30] |
ZHANG G, LUO Z, CUI K, et al. Meta-DETR: image-level few-shot object detection with inter-class correlation exploitation [J]. Neural Networks, 2023, 45(11): 12832-12843.
|
[31] |
ZHU X, SU W, LU L, et al. Deformable DETR: deformable Transformers for end-to-end object detection [EB/OL]. [2024-05-18]. .
|
[32] |
WU J, LIU S, HUANG D, et al. Multi-scale positive sample refinement for few-shot object detection [C]// Proceedings of the 2020 European Conference on Computer Vision, LNCS 12361. Cham: Springer, 2020: 456-472.
|
[33] |
HAN J, REN Y, DING J, et al. Few-shot object detection via variational feature aggregation [C]// Proceedings of the 37th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2023: 755-763.
|
[34] |
KINGMA D P, WELLING M. Auto-encoding variational Bayes[EB/OL]. [2024-05-24]. .
|
[35] |
REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks [C]// Proceedings of the 28th International Conference on Neural Information Processing Systems — Volume 1. Cambridge: MIT Press, 2015: 91-99.
|
[36] |
WANG Z, YANG B, YUE H, et al. Fine-grained prototypes distillation for few-shot object detection [C]// Proceedings of the 38th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2024: 5859-5866.
|
[37] |
EVERINGHAM M, VAN GOOL L, WILLIAMS C K I, et al. The PASCAL Visual Object Classes (VOC) challenge [J]. International Journal of Computer Vision, 2010, 88(2): 303-338.
|
[38] |
CHEN X, FANG H, LIN T Y, et al. Microsoft COCO captions: data collection and evaluation server [EB/OL]. [2024-05-21]..
|
[39] |
OpenMMLab. OpenMMLab few shot learning toolbox and benchmark [EB/OL]. [2024-06-18]..
|
[40] |
DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database [C]// Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2009: 248-255.
|
[41] |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778.
|
[42] |
ZHANG W, WANG Y X. Hallucination improves few-shot object detection [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 13003-13012.
|
[43] |
HAN G, HUANG S, MA J, et al. Meta Faster R-CNN: towards accurate few-shot object detection with attentive feature alignment[C]// Proceedings of the 36th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2022: 780-789.
|
[44] |
YAN X, CHEN Z, XU A, et al. Meta R-CNN: towards general solver for instance-level low-shot learning [C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 9576-9585.
|
[45] |
XIAO Y, LEPETIT V, MARLET R. Few-shot object detection and Viewpoint estimation for objects in the wild [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(3): 3090-3106.
|