[1] DUNN J C. Well-separated clusters and the optimal fuzzy partitions [J]. Journal of Cybernet, 1974, 4(1): 95-104. [2] BEZDEK J C. Pattern Recognition with Fuzzy Objective Function Algorithms [M]. Norwell, MA: Kluwer Academic Publishers, 1981: 34-41. [3] BEZDEK J C, KELLER J, KRISNAPURAM R, et al. Fuzzy Models and Algorithms for Pattern Recognition and Image Processing [M]. New York: Springer, 1999: 65-69. [4] FAN J L, ZHEN W Z, XIE W X. Suppressed fuzzy c-means clustering algorithm [J]. Pattern Recognition Letters, 2003, 24(9/10): 1607-1612. [5] 张锋,赵杰煜,朱绍军. 可区分惩罚控制竞争学习算法[J].模式识别与人工智能,2014,27(5):426-434.(ZHANG F, ZHAO J Y, ZHU S J. Discriminative rival penalization controlled competitive learning algorithm [J]. Pattern Recognition and Artificial Intelligence, 2014, 27(5): 426-434.) [6] SZILÁGYI L, SZILÁGYI S M. Generalization rules for the suppressed fuzzy c-means clustering algorithm [J]. Neurocomputing, 2014, 139(5223): 298-309. [7] SZILÁGYI L, SZILÁGYI S M, BENYÓZ. Analytical and numerical evaluation of the suppressed fuzzy c-means algorithm: a study on the competition in c-means clustering models [J]. Soft Computing, 2010, 14(5): 495-505. [8] HUNG W L, YANG M S, CHEN D H. Parameter selection for suppressed fuzzy c-means with an application to MRI segmentation [J]. Pattern Recognition Letters, 2006, 27(5): 424-438. [9] HUNG W L, CHEN D H, YANG M S. Suppressed fuzzy-soft learning vector quantization for MRI segmentation [J]. Artificial Intelligence in Medicine, 2011, 52(1): 33-43. [10] LAN H, JIN S B . An improved suppressed FCM algorithm for image segmentation [J]. Advanced Materials Research, 2013,712/713/714/715: 2349-2353. [11] ZHAO F, FAN J, LIU H. Optimal-selection-based suppressed fuzzy c-means clustering algorithm with self-tuning non local spatial information for image segmentation [J] . Expert System with Applications, 2014, 41(9): 4083-4093. [12] SZILÁGYI L, SZILÁGYI S M, KISS C. A generalized approach to the suppressed fuzzy c-means algorithm [M]// TORRA V, NARUKAWA Y, DAUMAS M. Modeling Decisions for Artificial Intelligence, LNCS 6408, Berlin: Springer, 2010: 140-151. [13] NYMA A, KANG M, KWON Y K, et al. A hybrid technique for medical image segmentation [J]. Journal of Biomedicine and Biotechnology, 2012, 2012(4):213-219. [14] LI Y, LI G. Fast fuzzy c-means clustering algorithm with spatial constraints for image segmentation [C]// Advances in Neural Network Research and Applications, Lecture Notes in Electrical Engineering 67. Berlin: Springer, 2010: 431-438. [15] SAAD M F, ALIMI A M. Improved modified suppressed fuzzy c-means [C]// Proceedings of the 2010 2nd International Conference on Image Processing Theory Tools and Applications. Piscataway, NJ: IEEE, 2010: 313-318. [16] 黄建军,谢维信.半抑制式模糊C-均值聚类算法[J].中国体视学与图像分析,2004,9(2):109-113.(HANG J J, XIE W X. Half-suppressed fuzzy c-means clustering algorithm [J]. Chinese Journal of Stereology and Image Analysis, 2004, 9(2): 109-113.) [17] TSAI H S, HUNG W L, YANG M S. A robust kernel-based fuzzy c-means algorithm by incorporating suppressed and magnified membership for MRI image segmentation [C]// Proceedings of the 4th International Conference of Artificial Intelligence and Computational Intelligence, LNCS 7530. Berlin: Springer, 2012: 744-754. [18] 兰红,闵乐泉.结合邻域信息的改进抑制式FCM图像分割方法[J].电视技术,2013,37(17):17-21.(LAN H, MIN L Q. Improved suppressed FCM algorithm for image segmentation based on neighborhood information [J]. Video Engineering, 2013, 37(17): 17-21.) [19] 范九伦.抑制式模糊C-均值聚类研究综述[J].西安邮电大学学报,2014,19(3):1-5.(FAN J L. A brief overview on suppressed fuzzy C-means clustering [J]. Journal of Xi'an University of Posts and Telecommunications, 2014, 19(3): 1-5.) [20] BACHE K, LICHMAN M. UCI machine learning repository [EB/OL]. [2015-11-19]. http://archive.ics.uci.edu/datasets.html. |