[1] 王袈欢, 汤卿, 陆煜衡. 基于TSP改进遗传算法的放射治疗点顺序优化研究[J]. 精密制造与自动,2018(3):16-19.(WANG J H,TANG Q,LU Y H. Optimization of radiotherapy point sequence based on TSP improved genetic algorithm[J]. Precision Manufacturing and Automation,2018(3):16-19.) [2] 张继军, 田宝国, 李萧. 用改进的多智能体遗传算法求解旅行商问题[J]. 计算机应用,2008,28(4):954-956.(ZHANG J J, TIAN B G,LI X. Solving TSP with improved multi-agent genetic algorithm[J]. Journal of Computer Applications,2008,28(4):954-956.) [3] 王海龙, 周辉仁, 魏颖辉. 基于遗传算法的一类多旅行商问题研究[J]. 计算机应用,2009,29(1):119-122.(WANG H L,ZHOU H R,WEI Y H. Study on multiple traveling salesman problem based on genetic algorithm[J]. Journal of Computer Applications, 2009,29(1):119-122.) [4] PUSPITA F M, MEITRILOVA A, YAHDIN S. Mathematical modelling of Traveling Salesman Problem(TSP)by implementing simulated annealing and genetic algorithms[J]. Journal of Physics:Conference Series,2020,1480:No. 012029. [5] GAO W. New ant colony optimization algorithm for the traveling salesman problem[J]. International Journal of Computational Intelligence Systems,2020,13(1):44-55. [6] ZHONG Y,LIN J,WANG L,et al. Discrete comprehensive learning particle swarm optimization algorithm with Metropolis acceptance criterion for traveling salesman problem[J]. Swarm and Evolutionary Computation,2018,42:77-88. [7] 乔屾, 吕志民, 张楠. 基于汉明距离的改进粒子群算法求解旅行商问题[J]. 计算机应用,2017,37(10):2767-2772.(QIAO S, LYU Z M, ZHANG N. Improved particle swarm optimization algorithm based on Hamming distance for traveling salesman problem[J]. Journal of Computer Applications,2017,37(10):2767-2772.) [8] DONG R, WANG S, WANG G, et al. Hybrid optimization algorithm based on wolf pack search and local search for solving traveling salesman problem[J]. Journal of Shanghai Jiaotong University(Science),2019,24(1):41-47. [9] 董海, 戴瑶, 张天瑞. 云制造模式下基于变邻域动态烟花算法的柔性车间调度[J]. 组合机床与自动化加工技术,2019(7):130-133. (DONG H, DAI Y, ZHANG T R. Flexible job shop scheduling based on variable neighborhood dynamic fireworks algorithm in cloud manufacturing mode[J]. Modular Machine Tool and Automatic Manufacturing Technique,2019(7):130-133.) [10] 孙波, 姜平, 周根荣, 等. 改进遗传算法在移动机器人路径规划中的应用[J]. 计算机工程与应用,2019,55(17):162-168. (SUN B,JIANG P,ZHOU G R,et al. Application of improved genetic algorithm in path planning of mobile robots[J]. Computer Engineering and Applications,2019,55(17):162-168.) [11] HOLLAND J H. Adaptation of codings and representations[M]//Adaptation in Natural and Artificial Systems:An Introductory Analysis with Applications to Biology,Control,and Artificial Intelligence. Cambridge:MIT Press,1992:141-158. [12] 施嘉伟, 陈观林, 徐煌. 改进遗传算法在共享单车停放点分配中的应用[J]. 传感器与微系统,2019,38(7):154-156,160. (SHI J W,CHEN G L,XU H. Application of improved genetic algorithm in shared bicycle parking point allocation[J]. Transducer and Microsystem Technologies,2019,38(7):154-156,160.) [13] 张丽萍, 柴跃廷, 曹瑞. 有时间窗车辆路径问题的改进遗传算法[J]. 计算机集成制造系统,2002,8(6):451-454.(ZHANG L P,CHAI Y T,CAO R. Improved genetic algorithm for vehicle routing problem with time windows[J]. Computer Integrated Manufacturing Systems,2002,8(6):451-454.) [14] 邱胜海, 陈曙鼎, 王云霞, 等. 遗传算法在车间设施布局优化中的应用[J]. 机械设计与制造工程,2017, 46(2):80-83.(QIU S H,CHEN S D,WANG Y X,et al. The application of genetic algorithm on workshop facilities optimal layout[J]. Machine Design and Manufacturing Engineering,2017,46(2):80-83.) [15] 魏全新, 刘贤锋, 黄锵, 等. 遗传算法选择方法的比较分析[J]. 通讯和计算机,2008,5(8):61-65.(WEN Q X,LIU X F, HUANG Q,et al. The comparison of different selection methods in genetic algorithms[J]. Journal of Communication and Computer,2008,5(8):61-65.) [16] 景志强, 王兆辉, 高琦. 混合NSGA-Ⅱ算法求解多目标柔性作业车间调度问题[J]. 组合机床与自动化加工技术,2019(7):138-140,145.(JING Z Q,WANG Z H,GAO Q. Hybrid NSGAⅡ algorithm for solving multi-objective flexible job-shop scheduling problem[J]. Modular Machine Tool and Automatic Manufacturing Technique,2019(7):138-140,145.) |