Journal of Computer Applications ›› 2021, Vol. 41 ›› Issue (11): 3104-3112.DOI: 10.11772/j.issn.1001-9081.2021010062
• Artificial intelligence • Previous Articles Next Articles
Received:
2021-01-13
Revised:
2021-03-20
Accepted:
2021-04-14
Online:
2021-11-20
Published:
2021-11-10
Contact:
Jie LI
About author:
Ll Kai,born in 1963,Ph. D.,professor. His research interestsinclude machine learning, data miningSupported by:
通讯作者:
李洁
作者简介:
李凯(1963—)男,河北保定人,教授,博士,主要研究方向:机器学习,数据挖掘基金资助:
CLC Number:
Kai LI, Jie LI. Structure-fuzzy multi-class support vector machine algorithm based on pinball loss[J]. Journal of Computer Applications, 2021, 41(11): 3104-3112.
李凯, 李洁. 基于pinball损失的结构模糊多分类支持向量机算法[J]. 《计算机应用》唯一官方网站, 2021, 41(11): 3104-3112.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021010062
数据集 | 样本数 | 特征数 | 类别数 | 每类包含的簇数 |
---|---|---|---|---|
Data1 | 400 | 2 | 4 | 1,1,1,1 |
Data2 | 300 | 2 | 3 | 2,3,3 |
Data3 | 500 | 3 | 5 | 1,1,1,1,1 |
Tab. 1 Synthetic dataset characteristics
数据集 | 样本数 | 特征数 | 类别数 | 每类包含的簇数 |
---|---|---|---|---|
Data1 | 400 | 2 | 4 | 1,1,1,1 |
Data2 | 300 | 2 | 3 | 2,3,3 |
Data3 | 500 | 3 | 5 | 1,1,1,1,1 |
数据集 | 样本数 | 特征数 | 类别数 |
---|---|---|---|
Iris | 150 | 4 | 3 |
Zoo | 101 | 16 | 7 |
Glass | 214 | 9 | 6 |
Seeds | 210 | 7 | 3 |
Ecoli | 327 | 7 | 5 |
Balance | 625 | 4 | 3 |
Soybean | 47 | 35 | 4 |
CMC | 1 473 | 9 | 3 |
Tab. 2 UCI dataset characteristics
数据集 | 样本数 | 特征数 | 类别数 |
---|---|---|---|
Iris | 150 | 4 | 3 |
Zoo | 101 | 16 | 7 |
Glass | 214 | 9 | 6 |
Seeds | 210 | 7 | 3 |
Ecoli | 327 | 7 | 5 |
Balance | 625 | 4 | 3 |
Soybean | 47 | 35 | 4 |
CMC | 1 473 | 9 | 3 |
数据集 | SimMSVM | OVO-TWSVM | OVA-TWSVM | Twin-KSVC | MBSVM | Pin-SFSimMSVM (层次聚类) | Pin-SFSimMSVM (C均值聚类) |
---|---|---|---|---|---|---|---|
Ripley | 86.200 0±4.467 2 | 88.000 0±3.887 3 | 85.800 0±4.756 3 | 85.000 0±3.681 8 | 85.600 0±4.263 5 | 88.000 0±4.422 2 | 88.100 0±4.756 3 |
Data1 | 84.150 0±2.000 7 | 84.250 0±3.197 8 | 82.500 0±3.015 6 | 80.000 0±2.500 0 | 79.625 0±3.387 6 | 84.450 0±2.420 4 | 84.450 0±2.420 4 |
Data2 | 74.166 7±3.773 0 | 74.166 7±3.418 3 | 75.333 3±3.279 3 | 72.166 7±3.187 5 | 71.666 7±3.015 9 | 76.833 3±4.142 5 | 74.500 0±4.037 4 |
Data3 | 78.375 0±2.208 7 | 87.125 0±1.608 4 | 84.400 0±4.880 8 | 83.500 0±3.634 8 | 84.125 0±3.227 5 | 79.027 8±2.365 1 | 78.625 0±3.653 9 |
Tab. 3 Comparison of accuracy and standard deviation of different algorithms in linear condition
数据集 | SimMSVM | OVO-TWSVM | OVA-TWSVM | Twin-KSVC | MBSVM | Pin-SFSimMSVM (层次聚类) | Pin-SFSimMSVM (C均值聚类) |
---|---|---|---|---|---|---|---|
Ripley | 86.200 0±4.467 2 | 88.000 0±3.887 3 | 85.800 0±4.756 3 | 85.000 0±3.681 8 | 85.600 0±4.263 5 | 88.000 0±4.422 2 | 88.100 0±4.756 3 |
Data1 | 84.150 0±2.000 7 | 84.250 0±3.197 8 | 82.500 0±3.015 6 | 80.000 0±2.500 0 | 79.625 0±3.387 6 | 84.450 0±2.420 4 | 84.450 0±2.420 4 |
Data2 | 74.166 7±3.773 0 | 74.166 7±3.418 3 | 75.333 3±3.279 3 | 72.166 7±3.187 5 | 71.666 7±3.015 9 | 76.833 3±4.142 5 | 74.500 0±4.037 4 |
Data3 | 78.375 0±2.208 7 | 87.125 0±1.608 4 | 84.400 0±4.880 8 | 83.500 0±3.634 8 | 84.125 0±3.227 5 | 79.027 8±2.365 1 | 78.625 0±3.653 9 |
数据集 | SimMSVM | OVO-TWSVM | OVA-TWSVM | Twin-KSVC | MBSVM | Pin-SFSimMSVM (层次聚类) | Pin-SFSimMSVM (C均值聚类) |
---|---|---|---|---|---|---|---|
Ripley | 85.200 0±4.341 0 | 85.200 0±4.237 4 | 83.000 0±3.583 9 | 84.400 0±4.880 8 | 85.800 0±2.481 3 | 88.600 0±2.675 0 | 87.800 0±3.705 9 |
Data1 | 80.500 0±2.677 1 | 83.375 0±2.703 5 | 82.875 0±3.729 1 | 83.125 0±3.596 4 | 80.875 0±4.528 1 | 83.611 1±1.949 0 | 83.100 0±2.319 0 |
Data2 | 87.333 3±2.956 0 | 88.333 3±4.021 5 | 87.333 3±3.885 4 | 88.333 3±3.006 2 | 88.148 2±2.939 7 | 88.333 3±2.330 7 | 88.000 0±2.129 4 |
Data3 | 73.125 0±3.380 0 | 86.250 0±3.747 7 | 87.625 0±3.120 8 | 81.250 0±2.703 5 | 82.500 0±2.972 7 | 76.250 0±2.539 4 | 75.000 0±2.783 4 |
Tab. 4 Comparison of accuracy and standard deviation of algorithms in nonlinear condition
数据集 | SimMSVM | OVO-TWSVM | OVA-TWSVM | Twin-KSVC | MBSVM | Pin-SFSimMSVM (层次聚类) | Pin-SFSimMSVM (C均值聚类) |
---|---|---|---|---|---|---|---|
Ripley | 85.200 0±4.341 0 | 85.200 0±4.237 4 | 83.000 0±3.583 9 | 84.400 0±4.880 8 | 85.800 0±2.481 3 | 88.600 0±2.675 0 | 87.800 0±3.705 9 |
Data1 | 80.500 0±2.677 1 | 83.375 0±2.703 5 | 82.875 0±3.729 1 | 83.125 0±3.596 4 | 80.875 0±4.528 1 | 83.611 1±1.949 0 | 83.100 0±2.319 0 |
Data2 | 87.333 3±2.956 0 | 88.333 3±4.021 5 | 87.333 3±3.885 4 | 88.333 3±3.006 2 | 88.148 2±2.939 7 | 88.333 3±2.330 7 | 88.000 0±2.129 4 |
Data3 | 73.125 0±3.380 0 | 86.250 0±3.747 7 | 87.625 0±3.120 8 | 81.250 0±2.703 5 | 82.500 0±2.972 7 | 76.250 0±2.539 4 | 75.000 0±2.783 4 |
数据集 | SimMSVM | Pin-SimMSVM | Pin-FSimMSVM (类中心距离法) | Pin-FSimMSVM (模糊C均值法) | Pin-FSimMSVM (S型方法) |
---|---|---|---|---|---|
Iris | 84.809 5±2.788 9 | 85.750 0±2.788 9 | 86.190 5±2.050 0 | 86.666 7±2.216 4 | 86.190 5±2.563 5 |
Zoo | 90.476 2±3.979 1 | 90.952 4±4.169 5 | 91.071 4±3.647 1 | 91.534 4±3.204 3 | 90.476 2±3.362 5 |
Glass | 52.790 7±5.029 8 | 53.720 9±5.847 4 | 54.651 2±6.215 4 | 55.038 7±5.139 5 | 54.263 6±4.192 5 |
Seeds | 87.202 4±2.525 4 | 87.500 0±2.773 7 | 87.414 6±2.984 6 | 88.095 2±2.662 0 | 87.830 7±2.248 1 |
Ecoli | 82.121 2±2.747 8 | 83.501 7±2.562 8 | 84.006 7±2.636 5 | 84.280 3±3.233 2 | 84.848 5±3.030 3 |
Balance | 87.040 0±2.192 5 | 88.560 0±2.531 2 | 88.720 0±2.678 6 | 88.355 6±2.656 6 | 88.444 4±2.336 2 |
Soybean | 100.000 0±0.000 0 | 100.000 0±0.000 0 | 100.000 0±0.000 0 | 100.000 0±0.000 0 | 100.000 0±0.000 0 |
CMC | 46.644 1±2.028 9 | 47.084 7±1.953 5 | 46.711 9±2.020 0 | 47.220 3±2.002 6 | 47.932 2±2.403 4 |
Tab. 5 Comparison of accuracy and standard deviation of different algorithms in solving fuzzy membership degree on UCI datasets (linear)
数据集 | SimMSVM | Pin-SimMSVM | Pin-FSimMSVM (类中心距离法) | Pin-FSimMSVM (模糊C均值法) | Pin-FSimMSVM (S型方法) |
---|---|---|---|---|---|
Iris | 84.809 5±2.788 9 | 85.750 0±2.788 9 | 86.190 5±2.050 0 | 86.666 7±2.216 4 | 86.190 5±2.563 5 |
Zoo | 90.476 2±3.979 1 | 90.952 4±4.169 5 | 91.071 4±3.647 1 | 91.534 4±3.204 3 | 90.476 2±3.362 5 |
Glass | 52.790 7±5.029 8 | 53.720 9±5.847 4 | 54.651 2±6.215 4 | 55.038 7±5.139 5 | 54.263 6±4.192 5 |
Seeds | 87.202 4±2.525 4 | 87.500 0±2.773 7 | 87.414 6±2.984 6 | 88.095 2±2.662 0 | 87.830 7±2.248 1 |
Ecoli | 82.121 2±2.747 8 | 83.501 7±2.562 8 | 84.006 7±2.636 5 | 84.280 3±3.233 2 | 84.848 5±3.030 3 |
Balance | 87.040 0±2.192 5 | 88.560 0±2.531 2 | 88.720 0±2.678 6 | 88.355 6±2.656 6 | 88.444 4±2.336 2 |
Soybean | 100.000 0±0.000 0 | 100.000 0±0.000 0 | 100.000 0±0.000 0 | 100.000 0±0.000 0 | 100.000 0±0.000 0 |
CMC | 46.644 1±2.028 9 | 47.084 7±1.953 5 | 46.711 9±2.020 0 | 47.220 3±2.002 6 | 47.932 2±2.403 4 |
数据集 | SimMSVM | Pin-SimMSVM | Pin-FSimMSVM (类中心距离法) | Pin-FSimMSVM (模糊C均值法) | Pin-FSimMSVM (S型方法) |
---|---|---|---|---|---|
Iris | 96.666 7±2.459 6 | 96.666 7±2.249 8 | 97.333 3±1.405 4 | 97.407 4±2.222 2 | 97.333 3±1.405 4 |
Zoo | 97.142 9±4.015 6 | 95.238 1±4.123 9 | 96.190 5±3.011 7 | 95.238 1±3.888 1 | 96.761 0±4.169 5 |
Glass | 61.337 2±5.115 9 | 62.325 6±5.234 7 | 63.565 9±5.454 0 | 64.244 2±6.451 7 | 63.953 5±5.167 9 |
Seeds | 92.261 9±2.110 5 | 92.328 0±1.981 4 | 93.121 7±1.430 8 | 93.121 7±1.861 3 | 93.650 8±2.380 9 |
Ecoli | 85.521 9±2.525 2 | 86.195 3±2.067 0 | 85.037 9±2.616 5 | 85.185 2±2.912 3 | 85.281 4±2.091 1 |
Balance | 85.600 0±2.294 0 | 85.200 0±2.636 0 | 85.688 9±1.572 0 | 86.240 0±2.408 9 | 86.133 3±2.190 9 |
Soybean | 100.000 0±0.000 0 | 100.000 0±0.000 0 | 100.000 0±0.000 0 | 100.000 0±0.000 0 | 100.000 0±0.000 0 |
CMC | 52.881 3±1.652 0 | 53.355 9±1.918 9 | 53.333 4±2.502 5 | 53.559 3±2.974 6 | 53.355 9±3.302 8 |
Tab. 6 Comparison of accuracy and standard deviation of different algorithms in solving fuzzy membership degree on UCI datasets (nonlinear)
数据集 | SimMSVM | Pin-SimMSVM | Pin-FSimMSVM (类中心距离法) | Pin-FSimMSVM (模糊C均值法) | Pin-FSimMSVM (S型方法) |
---|---|---|---|---|---|
Iris | 96.666 7±2.459 6 | 96.666 7±2.249 8 | 97.333 3±1.405 4 | 97.407 4±2.222 2 | 97.333 3±1.405 4 |
Zoo | 97.142 9±4.015 6 | 95.238 1±4.123 9 | 96.190 5±3.011 7 | 95.238 1±3.888 1 | 96.761 0±4.169 5 |
Glass | 61.337 2±5.115 9 | 62.325 6±5.234 7 | 63.565 9±5.454 0 | 64.244 2±6.451 7 | 63.953 5±5.167 9 |
Seeds | 92.261 9±2.110 5 | 92.328 0±1.981 4 | 93.121 7±1.430 8 | 93.121 7±1.861 3 | 93.650 8±2.380 9 |
Ecoli | 85.521 9±2.525 2 | 86.195 3±2.067 0 | 85.037 9±2.616 5 | 85.185 2±2.912 3 | 85.281 4±2.091 1 |
Balance | 85.600 0±2.294 0 | 85.200 0±2.636 0 | 85.688 9±1.572 0 | 86.240 0±2.408 9 | 86.133 3±2.190 9 |
Soybean | 100.000 0±0.000 0 | 100.000 0±0.000 0 | 100.000 0±0.000 0 | 100.000 0±0.000 0 | 100.000 0±0.000 0 |
CMC | 52.881 3±1.652 0 | 53.355 9±1.918 9 | 53.333 4±2.502 5 | 53.559 3±2.974 6 | 53.355 9±3.302 8 |
数据集 | Pin-SFSimMSVM (类内离散度) | Pin-SFSimMSVM (模糊C均值聚类) | Pin-SFSimMSVM (层次聚类) | Pin-SFSimMSVM (C均值聚类) |
---|---|---|---|---|
Iris | 87.916 7±2.341 5 | 87.333 3±2.766 1 | 88.333 3±2.039 5 | 88.000 0±3.018 5 |
Zoo | 90.952 4±3.127 1 | 91.428 6±2.357 9 | 92.261 9±3.050 8 | 92.261 9±3.050 8 |
Glass | 56.478 4±3.729 2 | 57.142 9±5.983 1 | 56.478 4±4.209 6 | 55.523 3±4.383 9 |
Seeds | 88.333 3±2.850 0 | 89.761 9±3.184 5 | 89.682 5±2.559 4 | 88.359 8±3.022 1 |
Ecoli | 85.353 5±2.512 6 | 84.393 9±2.264 3 | 85.353 5±3.787 9 | 85.353 5±2.512 6 |
Balance | 88.640 0±2.791 7 | 89.200 0±2.673 3 | 89.200 0±2.392 6 | 88.800 0±1.728 2 |
Soybean | 100.000 0±0.000 0 | 100.000 0±0.000 0 | 100.000 0±0.000 0 | 100.000 0±0.000 0 |
CMC | 48.888 9±2.389 6 | 48.022 6±1.496 9 | 48.135 6±1.962 0 | 47.984 9±1.687 4 |
Tab. 7 Comparison of accuracy and standard deviation of different algorithms in solving structural information on UCI datasets (linear)
数据集 | Pin-SFSimMSVM (类内离散度) | Pin-SFSimMSVM (模糊C均值聚类) | Pin-SFSimMSVM (层次聚类) | Pin-SFSimMSVM (C均值聚类) |
---|---|---|---|---|
Iris | 87.916 7±2.341 5 | 87.333 3±2.766 1 | 88.333 3±2.039 5 | 88.000 0±3.018 5 |
Zoo | 90.952 4±3.127 1 | 91.428 6±2.357 9 | 92.261 9±3.050 8 | 92.261 9±3.050 8 |
Glass | 56.478 4±3.729 2 | 57.142 9±5.983 1 | 56.478 4±4.209 6 | 55.523 3±4.383 9 |
Seeds | 88.333 3±2.850 0 | 89.761 9±3.184 5 | 89.682 5±2.559 4 | 88.359 8±3.022 1 |
Ecoli | 85.353 5±2.512 6 | 84.393 9±2.264 3 | 85.353 5±3.787 9 | 85.353 5±2.512 6 |
Balance | 88.640 0±2.791 7 | 89.200 0±2.673 3 | 89.200 0±2.392 6 | 88.800 0±1.728 2 |
Soybean | 100.000 0±0.000 0 | 100.000 0±0.000 0 | 100.000 0±0.000 0 | 100.000 0±0.000 0 |
CMC | 48.888 9±2.389 6 | 48.022 6±1.496 9 | 48.135 6±1.962 0 | 47.984 9±1.687 4 |
数据集 | Pin-SFSimMSVM (类内离散度) | Pin-SFSimMSVM (模糊C均值聚类) | Pin-SFSimMSVM (层次聚类) | Pin-SFSimMSVM (C均值聚类) |
---|---|---|---|---|
Iris | 97.777 8±1.666 6 | 97.333 3±2.108 2 | 98.000 0±2.330 7 | 97.333 3±2.629 4 |
Zoo | 97.619 0±2.790 6 | 97.354 5±2.567 4 | 98.571 4±2.300 2 | 98.095 2±2.459 0 |
Glass | 63.372 1±3.757 9 | 63.787 4±7.696 4 | 66.569 8±5.953 5 | 64.341 1±6.474 1 |
Seeds | 93.121 7±2.509 7 | 93.452 3±2.110 5 | 93.915 3±3.593 4 | 94.444 4±3.571 4 |
Ecoli | 85.795 4±2.421 2 | 85.521 9±2.743 1 | 85.795 4±2.421 2 | 85.353 5±2.091 1 |
Balance | 87.377 8±1.250 8 | 87.840 0±2.126 7 | 87.111 1±3.968 8 | 88.880 0±2.011 5 |
Soybean | 100.000 0±0.000 0 | 100.000 0±0.000 0 | 100.000 0±0.000 0 | 100.000 0±0.000 0 |
CMC | 54.124 3±2.843 1 | 53.220 3±2.596 3 | 54.877 6±2.411 6 | 54.339 0±2.407 9 |
Tab. 8 Comparison of accuracy and standard deviation of different algorithms in solving structural information on UCI datasets (nonlinear)
数据集 | Pin-SFSimMSVM (类内离散度) | Pin-SFSimMSVM (模糊C均值聚类) | Pin-SFSimMSVM (层次聚类) | Pin-SFSimMSVM (C均值聚类) |
---|---|---|---|---|
Iris | 97.777 8±1.666 6 | 97.333 3±2.108 2 | 98.000 0±2.330 7 | 97.333 3±2.629 4 |
Zoo | 97.619 0±2.790 6 | 97.354 5±2.567 4 | 98.571 4±2.300 2 | 98.095 2±2.459 0 |
Glass | 63.372 1±3.757 9 | 63.787 4±7.696 4 | 66.569 8±5.953 5 | 64.341 1±6.474 1 |
Seeds | 93.121 7±2.509 7 | 93.452 3±2.110 5 | 93.915 3±3.593 4 | 94.444 4±3.571 4 |
Ecoli | 85.795 4±2.421 2 | 85.521 9±2.743 1 | 85.795 4±2.421 2 | 85.353 5±2.091 1 |
Balance | 87.377 8±1.250 8 | 87.840 0±2.126 7 | 87.111 1±3.968 8 | 88.880 0±2.011 5 |
Soybean | 100.000 0±0.000 0 | 100.000 0±0.000 0 | 100.000 0±0.000 0 | 100.000 0±0.000 0 |
CMC | 54.124 3±2.843 1 | 53.220 3±2.596 3 | 54.877 6±2.411 6 | 54.339 0±2.407 9 |
数据集 | 噪声/% | SimMSVM | OVO-TWSVM | OVA-TWSVM | Twin-KSVC | MBSVM | Pin-SFSimMSVM (层次聚类) | Pin-SFSimMSVM (C均值聚类) |
---|---|---|---|---|---|---|---|---|
Iris | 0 | 96.666 7±2.459 6 | 97.000 0±2.918 7 | 96.333 3±2.459 5 | 97.037 1±3.093 2 | 97.333 3±2.629 4 | 98.000 0±2.330 7 | 97.333 3±2.629 4 |
5 | 93.750 0±4.166 7 | 91.875 0±2.635 2 | 91.875 0±3.359 3 | 91.562 5±2.572 7 | 92.361 1±2.756 0 | 94.097 2±1.877 9 | 93.750 0±3.340 8 | |
10 | 90.441 1±4.376 6 | 88.181 8±3.899 0 | 84.175 1±4.489 0 | 83.636 4±6.069 0 | 80.303 0±4.791 3 | 90.909 1±3.499 1 | 90.530 3±2.528 9 | |
Zoo | 0 | 97.142 9±4.015 6 | 95.238 1±3.888 1 | 96.190 5±4.375 9 | 96.190 5±3.011 7 | 96.190 5±3.011 7 | 98.571 4±2.300 2 | 98.095 2±2.459 0 |
5 | 93.636 4±5.335 4 | 93.636 4±3.178 2 | 91.818 2±6.356 4 | 91.414 1±4.218 0 | 92.272 7±5.270 9 | 95.454 5±4.545 5 | 96.363 6±2.874 8 | |
10 | 91.787 4±4.583 0 | 91.739 1±4.323 6 | 90.434 8±3.995 4 | 90.338 1±5.225 4 | 91.304 3±5.422 7 | 92.173 9±6.416 2 | 92.934 8±3.234 9 | |
Glass | 0 | 61.337 2±5.115 9 | 62.325 6±6.467 2 | 58.656 3±3.242 9 | 65.814 0±6.490 4 | 65.581 4±4.072 5 | 66.569 8±5.953 5 | 64.341 1±6.474 1 |
5 | 57.530 9±6.615 0 | 56.444 4±6.302 8 | 47.037 0±7.877 7 | 61.728 4±7.680 1 | 60.987 6±5.455 9 | 62.777 8±5.788 7 | 60.987 6±3.045 2 | |
10 | 55.000 0±6.529 3 | 55.555 6±5.412 7 | 45.052 1±5.095 5 | 58.796 3±4.266 7 | 53.385 4±4.303 9 | 59.114 6±6.859 0 | 58.125 0±4.653 3 | |
Seeds | 0 | 92.261 9±2.110 5 | 92.261 9±2.773 7 | 93.809 5±3.404 4 | 93.154 8±2.680 9 | 93.650 8±3.571 4 | 93.915 3±3.593 4 | 94.444 4±3.571 4 |
5 | 89.111 1±3.841 9 | 89.111 1±4.737 3 | 89.444 5±5.788 7 | 90.000 0±3.813 2 | 89.135 8±3.758 8 | 89.876 5±3.703 7 | 90.666 7±3.107 6 | |
10 | 87.021 3±2.547 3 | 86.595 7±3.759 5 | 85.106 4±5.334 3 | 87.574 5±3.779 5 | 87.021 3±3.812 7 | 87.943 3±3.009 0 | 87.446 8±3.242 3 | |
Ecoli | 0 | 85.521 9±2.525 2 | 85.151 5±2.839 1 | 82.491 6±2.845 8 | 85.000 0±2.983 6 | 85.151 5±2.839 1 | 85.795 4±2.421 2 | 85.353 5±2.091 1 |
5 | 80.289 9±4.222 6 | 81.594 2±4.482 6 | 79.871 2±2.754 1 | 78.502 4±4.038 9 | 79.710 1±3.618 4 | 81.304 3±4.398 5 | 81.594 2±2.227 0 | |
10 | 80.000 0±3.286 7 | 81.111 1±2.868 9 | 79.861 1±4.404 2 | 77.546 3±4.065 1 | 79.722 2±3.884 5 | 81.790 1±3.955 5 | 80.416 7±2.960 8 | |
Balance | 0 | 85.600 0±2.294 0 | 95.520 0±1.411 1 | 94.160 0±1.619 9 | 90.400 0±1.932 2 | 95.920 0±1.705 4 | 87.111 1±3.968 8 | 88.880 0±2.011 5 |
5 | 85.757 6±2.520 2 | 92.651 5±1.924 8 | 87.215 9±2.197 1 | 86.742 4±2.090 0 | 92.575 8±0.997 4 | 86.439 4±3.452 3 | 87.575 8±2.580 2 | |
10 | 83.913 0±2.311 8 | 90.289 9±2.219 1 | 84.329 7±2.154 4 | 82.029 0±3.882 1 | 90.289 9±2.219 1 | 84.855 1±2.033 9 | 85.104 7±2.714 0 | |
Soybean | 0 | 100.000 0±0.000 | 100.000 0±0.000 | 100.000 0±0.000 | 100.000 0±0.000 | 100.000 0±0.000 | 100.000 0±0.000 | 100.000 0±0.000 |
5 | 100.000 0±0.000 | 100.000 0±0.000 | 100.000 0±0.000 | 100.000 0±0.000 | 100.000 0±0.000 | 100.000 0±0.000 | 100.000 0±0.000 | |
10 | 95.454 5±6.428 2 | 94.545 5±6.356 4 | 93.636 4±6.135 9 | 96.363 6±4.694 5 | 94.545 5±6.356 4 | 97.979 8±4.008 7 | 97.979 8±4.008 7 | |
CMC | 0 | 52.881 3±1.652 0 | 53.559 3±2.310 2 | 52.169 5±2.756 0 | 52.203 4±2.390 8 | 53.898 3±2.096 5 | 54.877 6±2.411 6 | 54.339 0±2.407 9 |
5 | 49.961 6±2.278 6 | 48.064 5±1.805 7 | 48.612 9±3.728 1 | 47.217 7±2.187 4 | 48.387 1±2.904 4 | 50.752 7±2.115 3 | 51.612 9±3.193 4 | |
10 | 49.569 2±3.182 6 | 47.107 7±2.757 6 | 46.430 8±2.869 8 | 46.115 4±3.012 2 | 47.000 0±1.659 0 | 50.984 6±2.066 9 | 51.015 4±2.232 0 |
Tab. 9 Comparison of accuracy and standard deviation of different algorithms on UCI datasets with adding noise (nonlinear)
数据集 | 噪声/% | SimMSVM | OVO-TWSVM | OVA-TWSVM | Twin-KSVC | MBSVM | Pin-SFSimMSVM (层次聚类) | Pin-SFSimMSVM (C均值聚类) |
---|---|---|---|---|---|---|---|---|
Iris | 0 | 96.666 7±2.459 6 | 97.000 0±2.918 7 | 96.333 3±2.459 5 | 97.037 1±3.093 2 | 97.333 3±2.629 4 | 98.000 0±2.330 7 | 97.333 3±2.629 4 |
5 | 93.750 0±4.166 7 | 91.875 0±2.635 2 | 91.875 0±3.359 3 | 91.562 5±2.572 7 | 92.361 1±2.756 0 | 94.097 2±1.877 9 | 93.750 0±3.340 8 | |
10 | 90.441 1±4.376 6 | 88.181 8±3.899 0 | 84.175 1±4.489 0 | 83.636 4±6.069 0 | 80.303 0±4.791 3 | 90.909 1±3.499 1 | 90.530 3±2.528 9 | |
Zoo | 0 | 97.142 9±4.015 6 | 95.238 1±3.888 1 | 96.190 5±4.375 9 | 96.190 5±3.011 7 | 96.190 5±3.011 7 | 98.571 4±2.300 2 | 98.095 2±2.459 0 |
5 | 93.636 4±5.335 4 | 93.636 4±3.178 2 | 91.818 2±6.356 4 | 91.414 1±4.218 0 | 92.272 7±5.270 9 | 95.454 5±4.545 5 | 96.363 6±2.874 8 | |
10 | 91.787 4±4.583 0 | 91.739 1±4.323 6 | 90.434 8±3.995 4 | 90.338 1±5.225 4 | 91.304 3±5.422 7 | 92.173 9±6.416 2 | 92.934 8±3.234 9 | |
Glass | 0 | 61.337 2±5.115 9 | 62.325 6±6.467 2 | 58.656 3±3.242 9 | 65.814 0±6.490 4 | 65.581 4±4.072 5 | 66.569 8±5.953 5 | 64.341 1±6.474 1 |
5 | 57.530 9±6.615 0 | 56.444 4±6.302 8 | 47.037 0±7.877 7 | 61.728 4±7.680 1 | 60.987 6±5.455 9 | 62.777 8±5.788 7 | 60.987 6±3.045 2 | |
10 | 55.000 0±6.529 3 | 55.555 6±5.412 7 | 45.052 1±5.095 5 | 58.796 3±4.266 7 | 53.385 4±4.303 9 | 59.114 6±6.859 0 | 58.125 0±4.653 3 | |
Seeds | 0 | 92.261 9±2.110 5 | 92.261 9±2.773 7 | 93.809 5±3.404 4 | 93.154 8±2.680 9 | 93.650 8±3.571 4 | 93.915 3±3.593 4 | 94.444 4±3.571 4 |
5 | 89.111 1±3.841 9 | 89.111 1±4.737 3 | 89.444 5±5.788 7 | 90.000 0±3.813 2 | 89.135 8±3.758 8 | 89.876 5±3.703 7 | 90.666 7±3.107 6 | |
10 | 87.021 3±2.547 3 | 86.595 7±3.759 5 | 85.106 4±5.334 3 | 87.574 5±3.779 5 | 87.021 3±3.812 7 | 87.943 3±3.009 0 | 87.446 8±3.242 3 | |
Ecoli | 0 | 85.521 9±2.525 2 | 85.151 5±2.839 1 | 82.491 6±2.845 8 | 85.000 0±2.983 6 | 85.151 5±2.839 1 | 85.795 4±2.421 2 | 85.353 5±2.091 1 |
5 | 80.289 9±4.222 6 | 81.594 2±4.482 6 | 79.871 2±2.754 1 | 78.502 4±4.038 9 | 79.710 1±3.618 4 | 81.304 3±4.398 5 | 81.594 2±2.227 0 | |
10 | 80.000 0±3.286 7 | 81.111 1±2.868 9 | 79.861 1±4.404 2 | 77.546 3±4.065 1 | 79.722 2±3.884 5 | 81.790 1±3.955 5 | 80.416 7±2.960 8 | |
Balance | 0 | 85.600 0±2.294 0 | 95.520 0±1.411 1 | 94.160 0±1.619 9 | 90.400 0±1.932 2 | 95.920 0±1.705 4 | 87.111 1±3.968 8 | 88.880 0±2.011 5 |
5 | 85.757 6±2.520 2 | 92.651 5±1.924 8 | 87.215 9±2.197 1 | 86.742 4±2.090 0 | 92.575 8±0.997 4 | 86.439 4±3.452 3 | 87.575 8±2.580 2 | |
10 | 83.913 0±2.311 8 | 90.289 9±2.219 1 | 84.329 7±2.154 4 | 82.029 0±3.882 1 | 90.289 9±2.219 1 | 84.855 1±2.033 9 | 85.104 7±2.714 0 | |
Soybean | 0 | 100.000 0±0.000 | 100.000 0±0.000 | 100.000 0±0.000 | 100.000 0±0.000 | 100.000 0±0.000 | 100.000 0±0.000 | 100.000 0±0.000 |
5 | 100.000 0±0.000 | 100.000 0±0.000 | 100.000 0±0.000 | 100.000 0±0.000 | 100.000 0±0.000 | 100.000 0±0.000 | 100.000 0±0.000 | |
10 | 95.454 5±6.428 2 | 94.545 5±6.356 4 | 93.636 4±6.135 9 | 96.363 6±4.694 5 | 94.545 5±6.356 4 | 97.979 8±4.008 7 | 97.979 8±4.008 7 | |
CMC | 0 | 52.881 3±1.652 0 | 53.559 3±2.310 2 | 52.169 5±2.756 0 | 52.203 4±2.390 8 | 53.898 3±2.096 5 | 54.877 6±2.411 6 | 54.339 0±2.407 9 |
5 | 49.961 6±2.278 6 | 48.064 5±1.805 7 | 48.612 9±3.728 1 | 47.217 7±2.187 4 | 48.387 1±2.904 4 | 50.752 7±2.115 3 | 51.612 9±3.193 4 | |
10 | 49.569 2±3.182 6 | 47.107 7±2.757 6 | 46.430 8±2.869 8 | 46.115 4±3.012 2 | 47.000 0±1.659 0 | 50.984 6±2.066 9 | 51.015 4±2.232 0 |
噪声/% | SimMSVM | OVO-TWSVM | OVA-TWSVM | Twin-KSVC | MBSVM |
---|---|---|---|---|---|
总数 | 1/3/20 | 4/2/18 | 2/2/20 | 7/2/15 | 4/3/17 |
0 | 1/1/6 | 1/1/6 | 1/1/6 | 2/1/5 | 2/2/4 |
5 | 0/2/6 | 2/1/5 | 1/1/6 | 3/1/4 | 1/1/6 |
10 | 0/0/8 | 1/0/7 | 0/0/8 | 2/0/6 | 1/0/7 |
Tab. 10 Comparison of Pin-SFSimMSVM algorithm with other different algorithms for win/draw/loss on UCI standard datasets
噪声/% | SimMSVM | OVO-TWSVM | OVA-TWSVM | Twin-KSVC | MBSVM |
---|---|---|---|---|---|
总数 | 1/3/20 | 4/2/18 | 2/2/20 | 7/2/15 | 4/3/17 |
0 | 1/1/6 | 1/1/6 | 1/1/6 | 2/1/5 | 2/2/4 |
5 | 0/2/6 | 2/1/5 | 1/1/6 | 3/1/4 | 1/1/6 |
10 | 0/0/8 | 1/0/7 | 0/0/8 | 2/0/6 | 1/0/7 |
1 | VAPNIK V N. The Nature of Statistical Learning Theory [M]. New York: Springer, 1995: 96. 10.1007/978-1-4757-2440-0_7 |
2 | JAYADEVA, KHEMCHANDANI R, CHANDRA S. Twin support vector machines for pattern classification [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(5): 905-910. 10.1109/tpami.2007.1068 |
3 | HUANG H J, WEI X X, ZHOU Y Q. Twin support vector machines: a survey [J]. Neurocomputing, 2018, 300: 34-43. 10.1016/j.neucom.2018.01.093 |
4 | DING S F, ZHANG N, ZHANG X K, et al. Twin support vector machine: theory, algorithm and applications [J]. Neural Computing and Applications, 2017, 28(11): 3119-3130. 10.1007/s00521-016-2245-4 |
5 | TANVEER M, SHARMA A, SUGANTHAN P N. General twin support vector machine with pinball loss function [J]. Information Sciences, 2019, 494: 311-327. 10.1016/j.ins.2019.04.032 |
6 | XU Y T, YANG Z J, PAN X L. A novel twin support-vector machine with pinball loss [J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(2): 359-370. 10.1109/tnnls.2015.2513006 |
7 | SHARMA S, RASTOGI R, CHANDRA S. Large-scale twin parametric support vector machine using pinball loss function [J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(2): 987-1003. 10.1109/tsmc.2019.2896642 |
8 | 方佳艳,刘峤,吴德,等.基于模糊C-均值的相似性特征转换光滑支持向量机[J].电子学报,2018,46(11):2714-2724. 10.3969/j.issn.0372-2112.2018.11.019 |
FANG J Y, LIU Q, WU D, et al. Smooth support vector machine with similarity-based feature transformation technique and fuzzy C-means clustering [J]. Acta Electronica Sinica, 2018, 46(11): 2714-2724. 10.3969/j.issn.0372-2112.2018.11.019 | |
9 | XU Y T, PAN X L, ZHOU Z J, et al. Structural least square twin support vector machine for classification [J]. Applied Intelligence, 2015, 42(3): 527-536. 10.1007/s10489-014-0611-4 |
10 | CHEN D D, TIAN Y J, LIU X H. Structural nonparallel support vector machine for pattern recognition [J]. Pattern Recognition, 2016, 60: 296-305. 10.1016/j.patcog.2016.04.017 |
11 | YU L, ZHOU R T, TANG L, et al. A DBN-based resampling SVM ensemble learning paradigm for credit classification with imbalanced data [J]. Applied Soft Computing, 2018, 69: 192-202. 10.1016/j.asoc.2018.04.049 |
12 | 丁世飞,张健,张谢锴,等.多分类孪生支持向量机研究进展[J].软件学报,2018,29(1):89-108. 10.13328/j.cnki.jos.005319 |
DING S F, ZHANG J, ZHANG X K, et al. Survey on multi class twin support vector machines [J]. Journal of Software, 2018, 29(1): 89-108. 10.13328/j.cnki.jos.005319 | |
13 | SHAO Y H, CHEN W J, WANG Z, et al. Weighted linear loss twin support vector machine for large-scale classification [J]. Knowledge-Based Systems, 2015, 73:276-288. 10.1016/j.knosys.2014.10.011 |
14 | XIE J Y, HONE K, LIU W X, et al. Extending twin support vector machine classifier for multi-category classification problems [J]. Intelligent Data Analysis, 2013, 17(4):649-664. 10.3233/ida-130598 |
15 | TOMAR D, AGARWAL S. Direct acyclic graph based multi-class twin support vector machine for pattern classification [C]// Proceedings of the 2015 2nd ACM IKDD Conference on Data Sciences. New York: ACM, 2015: 80-85. 10.1145/2732587.2732598 |
16 | DON D R, IACOB I E. DCSVM: fast multi-class classification using support vector machines [J]. International Journal of Machine Learning and Cybernetics, 2020, 11(2): 433-447. 10.1007/s13042-019-00984-9 |
17 | LIU Y, BI J W, FAN Z P. A method for multi-class sentiment classification based on an improved One-Vs-One (OVO) strategy and the Support Vector Machine (SVM) algorithm [J]. Information Sciences, 2017, 394/395: 38-52. 10.1016/j.ins.2017.02.016 |
18 | YANG Z M, WU H J, LI C N, et al. Least squares recursive projection twin support vector machine for multi-class classification [J]. International Journal of Machine Learning and Cybernetics, 2016, 7(3):411-426. 10.1007/s13042-015-0394-x |
19 | XU Y T, GUO R, WANG L S. A twin multi-class classification support vector machine [J]. Cognitive Computation, 2013, 5(4): 580-588. 10.1007/s12559-012-9179-7 |
20 | YANG Z X, SHAO Y H, ZHANG X S. Multiple birth support vector machine for multi-class classification [J]. Neural Computing and Applications, 2013, 22(S1): 153-161. 10.1007/s00521-012-1108-x |
21 | CHU M X, LIU X P, GONG R F, et al. Multi-class classification method using twin support vector machines with multi-information for steel surface defects [J]. Chemometrics and Intelligent Laboratory Systems, 2018, 176: 108-118. 10.1016/j.chemolab.2018.03.014 |
22 | JU H M, JING L. An improved fuzzy multi-class twin support vector machine [C]// Proceedings of the 6th International Conference on Systems and Informatics. Piscataway: IEEE, 2019: 393-397. 10.1109/icsai48974.2019.9010402 |
23 | TOMAR D, AGARWAL S. A comparison on multi-class classification methods based on least squares twin support vector machine [J]. Knowledge-Based Systems, 2015, 81:131-147. 10.1016/j.knosys.2015.02.009 |
24 | TANG L, TIAN Y J, PARDALOS P M. A novel perspective on multiclass classification: regular simplex support vector machine [J]. Information Sciences, 2019, 480: 324-338. 10.1016/j.ins.2018.12.026 |
25 | GUO H S, WANG W J. An active learning-based SVM multi-class classification model [J]. Pattern Recognition, 2015, 48(5): 1577-1597. 10.1016/j.patcog.2014.12.009 |
26 | WESTON J, WATKINS C. Multi-class support vector machine: CSD-TR-98-04 [R]. Egham, Surrey: Royal Holloway, University of London, 1998. |
27 | CRAMMER K, SINGER Y. On the algorithmic implementation of multiclass kernel-based vector machines [J]. Journal of Machine Learning Research, 2001, 2: 265-292. 10.1007/3-540-44581-1_7 |
28 | WANG Z, XUE X Y. Multi-class support vector machine [M]// MA Y Q, GUO G D. Support Vector Machines Applications. Cham: Springer, 2014: 23-48. 10.1007/978-3-319-02300-7_2 |
29 | DUA D, GRAFF C. UCI machine learning repository [DS/OL]. [2020-12-08]. . |
30 | RIPLEY B D. Pattern Recognition and Neural Networks [DB/OL]. [2020-12-08]. . 10.1017/cbo9780511812651 |
[1] | JIA Heming, JIANG Zichao, LI Yao, SUN Kangjian. Simultaneous feature selection optimization based on improved spotted hyena optimizer algorithm [J]. Journal of Computer Applications, 2021, 41(5): 1290-1298. |
[2] | YUAN Qianqian, DENG Hongmin, WANG Xiaohang. Citrus disease and insect pest area segmentation based on superpixel fast fuzzy C-means clustering and support vector machine [J]. Journal of Computer Applications, 2021, 41(2): 563-570. |
[3] | TONG Lin, GUAN Zheng. Fuzzy granulation prediction of traffic flow based on improved whale optimization support vector machine [J]. Journal of Computer Applications, 2021, 41(10): 2919-2927. |
[4] | MIN Xin, WANG Haipeng, MOU Changning. Peptide spectrum match scoring algorithm based on multi-head attention mechanism and residual neural network [J]. Journal of Computer Applications, 2020, 40(6): 1830-1836. |
[5] | ZHANG Jianming, SHI Yuanhao, XU Zhengyi, WEI Jianming. Adaptive UWB/PDR fusion positioning algorithm based on error prediction [J]. Journal of Computer Applications, 2020, 40(6): 1755-1762. |
[6] | GUO Shujie, LI Zhihua, LIN Kaiqing. Fuzzy membership degree based virtual machine placement algorithmin cloud environment [J]. Journal of Computer Applications, 2020, 40(5): 1374-1381. |
[7] | WANG Yang, ZHAO Hongdong. Human activity recognition based on improved particle swarm optimization-support vector machine and context-awareness [J]. Journal of Computer Applications, 2020, 40(3): 665-671. |
[8] | LI Hui, YANG Zhixia. Multiple birth support vector machine based on Rescaled Hinge loss function [J]. Journal of Computer Applications, 2020, 40(11): 3139-3145. |
[9] | NIU Xiaoke, HUANG Yixin, XU Huaxing, JIANG Zhenyang. Speaker recognition in strong noise environment based on auditory cortical neuronal receptive field [J]. Journal of Computer Applications, 2020, 40(10): 3034-3040. |
[10] | BAI Dongying, YI Yaxing, WANG Qingchao, YU Zhiyong. Gradual multi-kernel learning method for concept drift [J]. Journal of Computer Applications, 2019, 39(9): 2494-2498. |
[11] | MENG Zhao, TIAN Shengwei, YU Long, WANG Ruijin. Regional bullying recognition based on joint hierarchical attentional network and independent recurrent neural network [J]. Journal of Computer Applications, 2019, 39(8): 2450-2455. |
[12] | HE Hailin, ZHENG Jianbin, YU Fangli, YU Lie, ZHAN Enqi. Exoskeleton robot gait detection based on improved whale optimization algorithm [J]. Journal of Computer Applications, 2019, 39(7): 1905-1911. |
[13] | KONG Jing, GUO Yuanbo, LIU Chunhui, WANG Yifeng. Gait feature identification method based on motion sensor in smartphone [J]. Journal of Computer Applications, 2019, 39(6): 1747-1752. |
[14] | SONG Ting, CHEN Mao, WU Chao, ZHANG Gongzhao. Automated course arrangement algorithm based on multi-class iterated local search [J]. Journal of Computer Applications, 2019, 39(6): 1760-1765. |
[15] | PAN Jianguo, LI Hao. Intrusion detection approach for IoT based on practical Byzantine fault tolerance [J]. Journal of Computer Applications, 2019, 39(6): 1742-1746. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||