Journal of Computer Applications ›› 2016, Vol. 36 ›› Issue (9): 2508-2515.DOI: 10.11772/j.issn.1001-9081.2016.09.2508
Previous Articles Next Articles
LI Yandong, HAO Zongbo, LEI Hang
Received:
2016-03-30
Revised:
2016-04-20
Online:
2016-09-08
Published:
2016-09-10
Supported by:
李彦冬, 郝宗波, 雷航
通讯作者:
李彦冬
作者简介:
李彦冬(1984-),男,四川泸州人,博士研究生,主要研究方向:机器学习、计算机视觉;郝宗波(1977-),男,河南新乡人,副教授,博士,主要研究方向:图像理解、视频信息处理;雷航(1960-),男,四川自贡人,教授,博士,主要研究方向:图像处理。
基金资助:
CLC Number:
LI Yandong, HAO Zongbo, LEI Hang. Survey of convolutional neural network[J]. Journal of Computer Applications, 2016, 36(9): 2508-2515.
李彦冬, 郝宗波, 雷航. 卷积神经网络研究综述[J]. 计算机应用, 2016, 36(9): 2508-2515.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2016.09.2508
[1] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition [J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. [2] HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets [J]. Neural Computation, 2006, 18(7): 1527-1554. [3] LEE H, GROSSE R, RANGANATH R, et al. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations [C]// ICML '09: Proceedings of the 26th Annual International Conference on Machine Learning. New York: ACM, 2009: 609-616. [4] HUANG G B, LEE H, ERIK G. Learning hierarchical representations for face verification with convolutional deep belief networks [C]// CVPR '12: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2012: 2518-2525. [5] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks [C]// Proceedings of Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 2012: 1106-1114. [6] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2014: 580-587. [7] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation [C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2015: 3431-3440. [8] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [EB/OL]. [2015-11-04]. http://www.robots.ox.ac.uk:5000/~vgg/publications/2015/Simonyan15/simonyan15.pdf. [9] SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions [C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2015: 1-8. [10] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [EB/OL]. [2016-01-04]. https://www.researchgate.net/publication/286512696_Deep_Residual_Learning_for_Image_Recognition. [11] PAN S J, YANG Q. A survey on transfer learning [J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10): 1345-1359. [12] COLLOBERT R, WESTON J, BOTTOU L, et al. Natural language processing (almost) from scratch [J]. Journal of Machine Learning Research, 2011, 12(1): 2493-2537. [13] OQUAB M, BOTTOU L, LAPTEV I, et al. Learning and transferring mid-level image representations using convolutional neural networks [C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2014: 1717-1724. [14] HUBEL D H, WIESEL T N. Receptive fields, binocular interaction, and functional architecture in the cat's visual cortex [J]. Journal of Physiology, 1962, 160(1): 106-154. [15] FUKUSHIMA K. Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position [J]. Biological Cybernetics, 1980, 36(4): 193-202. [16] WAIBEL A, HANAZAWA T, HINTON G, et al. Phoneme recognition using time-delay neural networks [M]// Readings in Speech Recognition. Amsterdam: Elsvier, 1990: 393-404. [17] VAILLANT R, MONROCQ C, LE CUN Y. Original approach for the localization of objects in images [J]. IEE Proceedings—Vision, Image and Signal Processing, 1994, 141(4): 245-250. [18] LAWRENCE S, GILES C L, TSOI A C, et al. Face recognition: a convolutional neural-network approach [J]. IEEE Transactions on Neural Networks, 1997, 8(1): 98-113. [19] DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database [C]// Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2009:248-255. [20] DONAHUE J, HENDRICKS L A, GUADARRAMA S, et al. Long-term recurrent convolutional networks for visual recognition and description [C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2015: 2625-2634. [21] VINYALS O, TOSHEV A, BENGIO S, et al. Show and tell: a neural image caption generator [C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2015: 3156-3164. [22] MALINOWSKI M, ROHRBACH M, FRITZ M. Ask your neurons: a neural-based approach to answering questions about images [C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway, NJ: IEEE, 2015: 1-9. [23] ANTOL S, AGRAWAL A, LU J, et al. VQA: visual question answering [C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway, NJ: IEEE, 2015: 2425-2433. [24] ZEILER M D, FERGUS R. Visualizing and understanding convolutional networks [C]// Proceedings of European Conference on Computer Vision, LNCS 8689. Berlin: Springer, 2014: 818-833. [25] JI S, XU W, YANG M, et al. 3D convolutional neural networks for human action recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 221-231. [26] LOWE D G. Distinctive image features from scale-invariant keypoints [J]. International Journal of Computer Vision, 2004, 60(2): 91-110. [27] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection [C]// Proceedings of the 2005 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2005: 886-893. [28] LECUN Y, BENGIO Y, HINTON G E. Deep learning [J]. Nature, 2015, 521(7553): 436-444. [29] 孙志军,薛磊,许阳明,等.深度学习研究综述[J].计算机应用研究,2012,29(8):2806-2810.(SUN Z J, XUE L, XU Y M, et al. Overview of deep learning [J]. Application Research of Computers, 2012, 29(8): 2806-2810) [30] DONAHUE J, JIA Y, VINYALS O, et al. DeCAF: a deep convolutional activation feature for generic visual recognition [J]. Computer Science, 2013, 50(1): 815-830. [31] RAZAVIAN A S, AZIZPOUR H, SULLIVAN J, et al. CNN features off-the-shelf: an astounding baseline for recognition [EB/OL]. [2015-11-22]. http://www.csc.kth.se/~azizpour/papers/ha_cvpr14w.pdf. [32] SERMANET P, KAVUKCUOGLU K, CHINTALA S, et al. Pedestrian detection with unsupervised multi-stage feature learning [C]// CVPR '13: Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2013: 3626-3633. [33] KARPATHY A, TODERICI G, SHETTY S, et al. Large-scale video classification with convolutional neural networks [C]// CVPR '14: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2014: 1725-1732. [34] TOSHEV A, SZEGEDY C. DeepPose: human pose estimation via deep neural networks [C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2014: 1653-1660. [35] KALCHBRENNER N, GREFENSTETTE E, BLUNSOM P. A convolutional neural network for modelling sentences [EB/OL]. [2016-01-07]. http://anthology.aclweb.org/P/P14/P14-1062.pdf. [36] KIM Y. Convolutional neural networks for sentence classification [EB/OL]. [2016-01-07]. http://anthology.aclweb.org/D/D14/D14-1181.pdf. [37] ABDEL-HAMID O, MOHAMMED A, JIANG H, et al. Convolutional neural networks for speech recognition [J]. IEEE/ACM Transactions on Audio, Speech and Language Processing, 2014, 22(10): 1533-1545. [38] SILVER D, HUANG A, MADDISON C J, et al. Mastering the game of Go with deep neural networks and tree search [J]. Nature, 2016, 529(7587): 484-489. [39] ZEILER M D, FERGUS R. Stochastic pooling for regularization of deep convolutional neural networks [EB/OL]. [2016-01-11]. http://www.matthewzeiler.com/pubs/iclr2013/iclr2013.pdf. [40] MURPHY K P. Machine Learning: A Probabilistic Perspective [M]. Cambridge, MA: MIT Press, 2012: 82-92. [41] CHATFIELD K, SIMONYAN K, VEDALDI A, et al. Return of the devil in the details: delving deep into convolutional nets [EB/OL]. [2016-01-12]. http://www.robots.ox.ac.uk/~vedaldi/assets/pubs/chatfield14return.pdf. [42] GOODFELLOW I J, WARDE-FARLEY D, MIRZA M, et al. Maxout networks [EB/OL]. [2016-01-12]. http://www-etud.iro.umontreal.ca/~goodfeli/maxout.pdf. [43] LIN M, CHEN Q, YAN S. Network in network [EB/OL]. [2016-01-12]. http://arxiv.org/pdf/1312.4400v3.pdf. [44] MONTAVON G, ORR G, MVLLER K R. Neural Networks: Tricks of the Trade [M]. 2nd ed. London: Springer, 2012: 49-131. [45] BENGIO Y, SIMARD P, FRASCONI P. Learning long-term dependencies with gradient descent is difficult [J]. IEEE Transactions on Neural Networks, 1994, 5(2): 157-166. [46] HE K, ZHANG X, REN S, et al. Delving deep into rectifiers: surpassing human-level performance on ImageNet classification [C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway, NJ: IEEE, 2015: 1026-1034. [47] HINTON G E, SRIVASTAVA N, KRIZHEVSKY A, et al. Improving neural networks by preventing co-adaption of feature detectors [R/OL]. [2015-10-26]. http://arxiv.org/pdf/1207.0580v1.pdf. [48] WAN L, ZEILER M, ZHANG S, et al. Regularization of neural networks using dropconnect [C]// Proceedings of the 2013 International Conference on Machine Learning. New York: ACM Press, 2013: 1058-1066. [49] HE K, SUN J. Convolutional neural networks at constrained time cost [C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2015: 5353-5360. [50] SPRINGENBERG J T, DOSOVITSKIY A, BROX T, et al. Striving for simplicity: the all convolutional net [EB/OL]. [2015-12-24]. http://arxiv.org/pdf/1412.6806.pdf. [51] VAN DER MAATEN L, HINTON G. Visualizing data using t-SNE [EB/OL]. [2015-12-24]. http://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf. [52] OLIVA A, TORRALBA A. Modeling the shape of the scene: a holistic representation of the spatial envelope [J]. International Journal of Computer Vision, 2001, 42(3): 145-175. [53] WANG J, YANG J, YU K. Locality-constrained linear coding for image classification [C]// Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2010: 3360-3367. [54] ZEILER M D, TAYLOR G W, FERGUS R. Adaptive deconvolutional networks for mid and high level feature learning [C]// ICCV '11: Proceedings of the 2011 International Conference on Computer Vision. Piscataway, NJ: IEEE, 2011: 2018-2025. [55] NGUYEN A, YOSINSKI J, CLUNE J, et al. Deep neural networks are easily fooled: high confidence predictions for unrecognizable images [C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2015: 427-436. [56] FLOREANO D, MATTIUSSI C. Bio-inspired Artificial Intelligence: Theories Methods and Technologies [M]. Cambridge, MA: MIT Press, 2008: 1-97. [57] 庄福振,罗平,何清,等.迁移学习研究进展[J].软件学报,2015,26(1):26-39.(ZHUANG F Z, LUO P, HE Q, et al. Survey on transfer learning research [J]. Journal of Software, 2015, 26(1): 26-39.) [58] LI F, FERGUS R, PERONA P. One-shot learning of object categories [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(4):594-611. [59] GRIFFIN B G, HOLUB A, PERONA P. The Caltech-256 [R/OL]. [2016-01-03]. http://xueshu.baidu.com/s?wd=paperuri%3A%28699092e99ad6f96f8696507d539a51c8%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fciteseer.ist.psu.edu%2Fshowciting%3Fcid%3D11093943&ie=utf-8&sc_us=16824823650146432853. [60] ZHOU B, LAPEDRIZA A, XIAO J, et al. Learning deep features for scene recognition using places database [C]// Proceedings of Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press. 2014:487-495. [61] LOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift [EB/OL]. [2016-01-06]. http://jmlr.org/proceedings/papers/v37/ioffe15.pdf. [62] GIRSHICK R B. Fast R-CNN [EB/OL]. [2016-01-06]. http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Girshick_Fast_R-CNN_ICCV_2015_paper.pdf. [63] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks [EB/OL]. [2016-01-06]. http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf. [64] UIJLINGS J, SANDE K, GEVERS T, et al. Selective search for object recognition [J]. International Journal of Computer Vision, 2013, 104(2): 154-171. [65] KHAN S H, BENNAMOUN M, SOHEL F, et al. Automatic feature learning for robust shadow detection [C]// CVPR'14: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2014: 1939-1946. [66] TAIGMAN Y, YANG M, RANZATO M, et al. DeepFace: closing the gap to human-level performance in face verification [C]// CVPR'14: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2014: 1701-1708. [67] SCHROFF F, KALENICHENKO D, PHILBIN J. FaceNet: a unified embedding for face recognition and clustering [C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2015: 815-823. [68] LEVI G, HASSNER T. Age and gender classification using convolutional neural networks [C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Washington, DC: IEEE Computer Society, 2015: 34-42. |
[1] | Guanglei YAO, Juxia XIONG, Guowu YANG. Flower pollination algorithm based on neural network optimization [J]. Journal of Computer Applications, 2024, 44(9): 2829-2837. |
[2] | Ying HUANG, Jiayu YANG, Jiahao JIN, Bangrui WAN. Siamese mixed information fusion algorithm for RGBT tracking [J]. Journal of Computer Applications, 2024, 44(9): 2878-2885. |
[3] | Jieru JIA, Jianchao YANG, Shuorui ZHANG, Tao YAN, Bin CHEN. Unsupervised person re-identification based on self-distilled vision Transformer [J]. Journal of Computer Applications, 2024, 44(9): 2893-2902. |
[4] | Na WANG, Lin JIANG, Yuancheng LI, Yun ZHU. Optimization of tensor virtual machine operator fusion based on graph rewriting and fusion exploration [J]. Journal of Computer Applications, 2024, 44(9): 2802-2809. |
[5] | Yexin PAN, Zhe YANG. Optimization model for small object detection based on multi-level feature bidirectional fusion [J]. Journal of Computer Applications, 2024, 44(9): 2871-2877. |
[6] | Yun LI, Fuyou WANG, Peiguang JING, Su WANG, Ao XIAO. Uncertainty-based frame associated short video event detection method [J]. Journal of Computer Applications, 2024, 44(9): 2903-2910. |
[7] | Tingjie TANG, Jiajin HUANG, Jin QIN. Session-based recommendation with graph auxiliary learning [J]. Journal of Computer Applications, 2024, 44(9): 2711-2718. |
[8] | Rui ZHANG, Pengyun ZHANG, Meirong GAO. Self-optimized dual-modal multi-channel non-deep vestibular schwannoma recognition model [J]. Journal of Computer Applications, 2024, 44(9): 2975-2982. |
[9] | Jinjin LI, Guoming SANG, Yijia ZHANG. Multi-domain fake news detection model enhanced by APK-CNN and Transformer [J]. Journal of Computer Applications, 2024, 44(9): 2674-2682. |
[10] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[11] | Xiyuan WANG, Zhancheng ZHANG, Shaokang XU, Baocheng ZHANG, Xiaoqing LUO, Fuyuan HU. Unsupervised cross-domain transfer network for 3D/2D registration in surgical navigation [J]. Journal of Computer Applications, 2024, 44(9): 2911-2918. |
[12] | Hang YANG, Wanggen LI, Gensheng ZHANG, Zhige WANG, Xin KAI. Multi-layer information interactive fusion algorithm based on graph neural network for session-based recommendation [J]. Journal of Computer Applications, 2024, 44(9): 2719-2725. |
[13] | Xingyao YANG, Yu CHEN, Jiong YU, Zulian ZHANG, Jiaying CHEN, Dongxiao WANG. Recommendation model combining self-features and contrastive learning [J]. Journal of Computer Applications, 2024, 44(9): 2704-2710. |
[14] | Shunyong LI, Shiyi LI, Rui XU, Xingwang ZHAO. Incomplete multi-view clustering algorithm based on self-attention fusion [J]. Journal of Computer Applications, 2024, 44(9): 2696-2703. |
[15] | Yu DU, Yan ZHU. Constructing pre-trained dynamic graph neural network to predict disappearance of academic cooperation behavior [J]. Journal of Computer Applications, 2024, 44(9): 2726-2731. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||