[1] RUDIN L I, OSHER S, FATEMI E. Nonlinear total variation based noise removal algorithms[J]. Physica D:Nonlinear Phenomena, 1992, 60(1/2/3/4):259-268. [2] RING W. Structural properties of solutions to total variation regularization problems[J]. Mathematical Modelling and Numerical Analysis, 2000, 34(4):799-810. [3] WEICKET J. Anisotropic Diffusion in Image Processing[M]. Stuttgart:Teubner-Verlog, 1998:59-60. [4] BLOMGREN P, CHAN T F, MULET P, et al. Total variation image restoration:numerical methods and extensions[C]//Proceedings of the 1997 International Conference on Image Processing. Piscataway, NJ:IEEE, 1997:384-387. [5] CHEN Y M, LEVINE S, RAO M. Variable exponent, linear growth functionals in image restoration[J]. SIAM Journal on Applied Mathematics, 2006, 66(4):1383-1406. [6] HUANG C, ZENG L. Level set evolution model for image segmentation based on variable exponent p-Laplace equation[J]. Applied Mathematical Modelling, 2016, 40(17/18):7739-7750. [7] LIU Q, GUO Z, WANG C. Renormalized solutions to a reaction-diffusion system applied to image denoising[J]. Discrete and Continuous Dynamical Systems:Series B, 2016, 21(6):1829-1858. [8] MAISELI B J, ELISHA O A, GAO H. A multi-frame super-resolution method based on the variable exponent nonlinear diffusion regularizer[J]. EURASIP Journal on Image and Video Processing, 2015, 2015(1):22. [9] 董婵婵,张权,郝慧艳,等.基于变指数的片相似性扩散图像降噪算法,计算机应用,2014,34(10):2963-2966.(DONG C C, ZHANG Q, HAO H Y, et al. Patch similarity anisotropic diffusion algorithm based on variable exponent for image denoising[J]. Journal of Computer Applications, 2014, 34(10):2963-2966.) [10] 张芳,崔学英,张权,等.基于变指数各向异性扩散和非局部的最大似然期望最大低剂量CT重建算法[J].计算机应用,2014,34(12):3605-3608.(ZHANG F, CUI X Y, ZHANG Q, et al. MLEM low-dose CT reconstruction algorithm based on variable exponent anisotropic diffusion and non-locality[J]. Journal of Computer Applications, 2014, 34(12):3605-3608.) [11] 王益艳.联合结构张量和变指数正则变分医学图像复原[J].计算机工程与应用,2016,52(15):208-211.(WANG Y Y. Medical image restoration via joint structure tensor and variable index regularization variational[J]. Computer Engineering and Applications, 2016, 52(15):208-211.) [12] KUIJPER A. p-Laplacian driven image processing[C]//Proceedings of the 2007 IEEE International Conference on Image Processing. Piscataway, NJ:IEEE, 2007, 5:V-257-V-260. [13] HUNG K W, SIU W C. Robust soft-decision interpolation using weighted least squares[J]. IEEE Transactions on Image Processing, 2012, 21(3):1061-1069. [14] WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment:from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4):600-612. |