[1] LUI D, CAMERON A, MODHAFAR A, et al. Low-dose computed tomography via spatially adaptive Monte-Carlo reconstruction [J]. Computerized Medical Imaging and Graphics, 2013, 37(7/8): 438-449. [2] RUST G F, AURICH V, REISER M. Noise dose reduction and image improvements in screening virtual colonoscopy with tube currents of 20 mAs with nonlinear Gaussian filter chains [C]//Proceedings of SPIE 4683. Bellingham, WA: SPIE Press, 2002: 186-197. [3] CHEN Y, LI Y, YU W, et al. Joint-map tomographic reconstruction with patch similarity based mixture prior model [J]. Multiscale Modeling and Simulation, 2011, 9(4): 1399-1419. [4] ZHANG H, MA J H, WANG J, et al. Statistical image reconstruction for low-dose CT using nonlocal means-based regularization [J]. Computerized Medical Imaging and Graphics, 2014, 38: 423-435. [5] ZHANG H, MA J H, WANG J, et al. Statistical image reconstruction for low-dose CT using nonlocal means-based regularization, Part II: an adaptive approach [J]. Computerized Medical Imaging and Graphics, 2015, 43: 26-35. [6] WANG J, LI T F, LU H B, et al. Penalized weighted least-squares approach to sinogram noise reduction and image reconstruction for low-dose X-ray computed tomography [J]. IEEE Transactions on Medical Imaging, 2006, 25(10): 1272-1283. [7] XU Q, YU H Y, MOU X Q, et al. Low-dose X-ray CT reconstruction via dictionary learning [J]. IEEE Transactions on Medical Imaging, 2012, 31(9): 1682-1697. [8] TIAN Z, JIA X, YUAN K H, et al. Low-dose CT reconstruction via edge-preserving total variation regularization [J]. Physics in Medicine and Biology, 2011, 56(18): 5949-5967. [9] ZHU Y, ZHAO M L, ZHAO Y S, et al. Noise reduction with low-dose CT data based on a modified ROF model [J]. Optics Express, 2012, 20(16): 17987-18004. [10] CHAO S M, TSAI D M. An improved anisotropic diffusion model for detail- and edge-preserving smoothing [J]. Pattern Recognition Letters, 2010, 31(13): 2012-2023. [11] LOU Y F, ZENG T Y, OSHER S, et al. A weighted difference of anisotropic and isotropic total variation model for image processing [J]. SIAM Journal on Imaging Sciences, 2015, 8(3): 1798-1823. [12] TANG J, NETT B E, CHEN G H. Performance comparison between total variation-based compressed sensing and statistical iterative reconstruction algorithms [J]. Physics in Medicine & Biology, 2009, 54(19): 5781-5804. [13] XU Q, MOU X, WANG G, et al. Statistical interior tomography [J]. IEEE Transactions on Medical Imaging, 2011, 30(5): 1116-1128. [14] LI T F, LI X, WANG J, et al. Nonlinear sinogram smoothing for low-dose X-ray CT [J]. IEEE Transactions on Nuclear Science, 2004, 51(5): 2505-2513. [15] FESSLER J A. Penalized weighted least-squares image reconstruction for positron emission tomography [J]. IEEE Transactions on Medical Imaging, 1994, 13(2): 290-300. [16] RUDIN L, OSHER S, FATEMI E. Nonlinear total variation based noise removal algorithms [J]. Physica D — Nonlinear Phenomena, 1992, 60(1/2/3/4): 259-268. [17] KIANI M, SEID H P. State estimation of nonlinear dynamic systems using weighted variance-based adaptive particle swarm optimization [J]. Applied Soft Computing, 2015, 34(C): 1-17. [18] LU X Q, SUN Y, YUAN Y, et al. Image reconstruction by an alternating minimization [J]. Neuro Computing, 2011, 74(5): 661-670. [19] ELBKRI I, FESSLER J. Statistical image reconstruction for polyene-rgetic X-ray computed tomography [J]. IEEE Transactions on Medical Imaging, 2002, 21: 89-99. [20] HSIAO T, RANGARAJAN A, GINDI G. A new convex edge-preserving median prior with applications to tomography [J]. IEEE Transactions on Medical Imaging, 2003, 22(5): 580-585. [21] 钱姗姗, 黄静, 马建华, 等. 基于投影数据非单调性全变分恢复的低剂量CT重建 [J]. 电子学报, 2011, 39(7): 1702-1707.(QIAN S S, HUANG J, MA J H, et al. Nonmonotone total variation minimization based projection restoration for low-dose CT reconstruction [J]. Acta Electronica Sinica, 2011, 39(7): 1702-1707.) [22] 王丽艳, 韦志辉, 低剂量CT 的线性Bregman迭代重建算法[J]. 电子与信息学报, 2013, 35(10): 2418-2424.(WANG L Y, WEI Z H. Linearized bregman iterations for low-dose CT reconstruction [J]. Journal of Electronics and Information, 2013, 35(10): 2418-2424.) |