[1]RUDIN L, OSHER S, FATEMI E. Nonlinear total variation based noise removal algorithms[J]. Physica D:Nonlinear Phenomena,1992, 60(1/2/3/4):259-268.[2]DRAPARA C S. A nonlinear total variation-based denoising method with regularization parameters[J]. IEEE Transactions on Biomedical Engineering, 2009, 56(3):582-586.[3]CHINNA R B, MADHAVI L M. A combination of wavelet and fractal image denoising technique[J]. International Journal of Electronics Engineering, 2010, 2(2):259-264.[4]GHAZEL M, FREEMAN G H, VRSCAY E R. Fractal image denoising[J]. IEEE Transactions on Image Processing, 2003, 12(12):1560-1578.[5]LANDI G, LOLI P E. An efficient method for nonnegatively constrained total variation-based denoising of medical images corrupted by Poisson noise[J]. Computerized Medical Imaging and Graphics,2012, 36(1):38-46.[6]STEPHEN K L, MICHAEL H, KNOLL F, et al.A total variation based approach to correcting surface coil magnetic resonance images[J]. Applied Mathematics and Computation, 2011, 218(2): 219-232.[7]GILBOA G, SOCHEN N, ZEEVI Y Y. Variational denoising of partly textured images by spatially varying constraints[J]. IEEE Transactions on Image Processing, 2006, 15(8):2281-2289.[8]LI F, SHEN C M, FAN J S, et al. Image restoration combing a total variational filter and a fourth-order filter[J]. Journal of Visual Communication and Image Representation, 2007, 18(4):322-330.[9]孙玉宝, 韦志辉, 吴敏, 等. 稀疏性正则化的图像泊松去噪算法[J]. 电子学报, 2011, 39(2): 285-290.[10]胡学刚, 张龙涛, 蒋伟. 基于偏微分方程的变分去噪模型[J]. 计算机应用, 2012,32(7): 1879-1881, 1901.[11]ZHANG B, FADILJ M, STARCK J-L. Wavelets, ridgelets and curvelets for poisson noise removal[J]. IEEE Transactions on Image Processing, 2008, 17(7):1093-1108.[12]LE T, CHARTRAND R, ASAKI T J. A variational approach to reconstructing images corrupted by Poisson noise [J]. Journal of Mathematical Imaging and Vision, 2007, 27(3):257-263.[13]PU Y F, ZHOU J L, YUAN X. Fractional differential mask: a fractional differential-based approach for multiscale texture enhancement[J]. IEEE Transactions on Image Processing, 2010, 19(2):491-511.[14]RICHARDSON W. Bayesian-based iterative method of image restoration[J]. Journal of the Optical Society of America, 1972, 62(1):1917-1983.[15]LUCY L. An iterative technique for the rectification of observed distributions[J]. Astronomical Journal, 1974, 79(6):745-754.[16]OPPENHEIM A V. Signals and systems[M].2nd ed. Upper Saddle River, New Jersey, USA: Prentice Hall, 1997.[17]ORTIGUEIRA M D. A coherent approach to noninteger order derivatives[J]. Signal Processing, 2006, 86(10): 2505-2515. |