[1] TERROVITIS M, POULIS G, MAMOULIS N, et al. Local suppression and splitting techniques for privacy-preserving publication of trajectories[J]. IEEE Transactions on Knowledge & Data Engineering, 2017, 29(7):1466-1479. [2] XIN Y, XIE Z Q, YANG J. The privacy-preserving method for dynamic trajectory releasing based on adaptive clustering[J]. Information Sciences, 2017, 378(C):131-143. [3] 霍峥, 孟小峰. 轨迹隐私保护技术研究[J]. 计算机学报, 2011, 34(10):1820-1830.(HUO Z, MENG X F. A survey of trajectory privacy-preserving techniques[J]. Chinese Journal of Computers, 2011, 34(10):1820-1830.) [4] TERROVITIS M, MAMOULIS N. Privacy preservation in the publication of trajectories[C]//Proceedings of the 9th International Conference on Mobile Data Management. Piscataway, NJ:IEEE, 2008:65-72. [5] CHEN R, FUNG B C M, MOHAMMED N, et al. Privacy-preserving trajectory data publishing by local suppression[J].Information Sciences, 2013, 231(1):83-97. [6] KOMISHANI E G, ABADI M, DELDAR F. PPTD:Preserving personalized privacy in trajectory data publishing by sensitive attribute generalization and trajectory local suppression[J]. Knowledge-Based Systems, 2016, 94:43-59. [7] 赵婧, 张渊, 李兴华,等. 基于轨迹频率抑制的轨迹隐私保护方法[J]. 计算机学报, 2014, 37(10):2096-2106.(ZHAO J, ZHANG Y, LI X H, et al. A trajectory privacy protection approach via trajectory frequency suppression[J]. Chinese Journal of Computers, 2014, 37(10):2096-2106.) [8] GHASEMZADEH M, FUNG B C M, CHEN R, et al. Anonymizing trajectory data for passenger flow analysis[J]. Transportation Research Part C:Emerging Technologies, 2014, 39(2):63-79. [9] SHANNON C E. A mathematical theory of communication[J]. ACM SIGMOBILE Mobile Computing and Communications Review, 2001, 5(1):3-55. [10] 王彩梅,郭亚军,郭艳华.位置服务中用户轨迹的隐私度量[J]. 软件学报, 2012, 23(2):352-360.(WANG C M, GUO Y J, GUO Y H. Privacy metric for user's trajectory in location-based services[J]. Journal of Software, 2012, 23(2):352-360.) [11] ABUL O, BONCHI F, NANNI M. Never walk alone:Uncertainty for anonymity in moving objects databases[C]//Proceedings of the 2008 International Conference on Data Engineering. Washington, DC:IEEE Computer Society, 2008:376-385. [12] ATZORI M, SAYGIN Y. Towards trajectory anonymization:a generalization-based approach[C]//Proceedings of the SIGSPATIAL ACM GIS 2008 International Workshop on Security and Privacy in GIS and LBS. New York:ACM,2008:52-61. [13] HUO Z, MENG X, HU H, et al. You can walk alone:trajectory privacy-preserving through significant stays protection[C]//Proceedings of the 17th International Conference on Database Systems for Advanced Applications. Berlin:Springer-Verlag,2012:351-366. [14] AROVOY R, BONCHI F, LAKSHMANAN L V S, et al. Anonymizing moving objects:how to hide a MOB in a crowd?[C]//Proceedings of the 12th International Conference on Extending Database Technology:Advances in Database Technology. New York:ACM,2009:72-83. [15] MOHAMMED N, FUNG B C M, HUNG P C K, et al. Anonymizing healthcare data:a case study on the blood transfusion service[C]//Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM,2009:1285-1294. [16] LIN S, LIAO M. Towards publishing set-valued data with high utility[J]. Journal of Computational Information Systems, 2014, 10(22):9487-9501. [17] AGHDAM M R S, SONEHARA N. Achieving high data utility k-anonymization using similarity-based clustering model[J]. IEICE Transactions on Information and Systems, 2016,99(8):2069-2078. [18] HUDA M N, YAMADA S, SONEHARA N. On enhancing utility in k-anonymization[J]. International Journal of Computer Theory and Engineering, 2012, 4(4):527-532. |