[1] 苏松志,李绍滋,陈淑媛,等.行人检测技术综述[J].电子学报,2012,40(4):814-820.(SU S Z, LI S Z, CHEN S Y, et al. A survey on pedestrian detection[J]. Acta Electronica Sinica, 2012, 40(4):814-820.) [2] REN S, HE K, GIRSHICK R, et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149. [3] GIRSHICK R. Fast R-CNN[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway, NJ:IEEE, 2015:1440-1448. [4] REDMON J, DIVVALA S, GIRSHICK R, et al. You Only Look Once:unified, real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2016:779-788. [5] REDMON J, FARHADI A. YOLO9000:better, faster, stronger[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2017:6517-6525. [6] LIU W, ANGUELOV D, ERHAN D, et al. SSD:Single Shot multibox Detector[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2016:21-37. [7] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2005:886-893. [8] DOLLAR P, WOJEK C, SCHIELE B, et al. Pedestrian detection:a benchmark[C]//Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2009:304-311. [9] KONG T, YAO A, CHEN Y, et al. HyperNet:towards accurate region proposal generation and joint object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society,2016:845-853. [10] LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2017:936-944. [11] MAO J, XIAO T, JIANG Y, et al. What can help pedestrian detection?[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2017:6034-6043. [12] ZHANG K, ZHANG Z, LI Z, et al. Joint face detection and alignment using multitask cascaded convolutional networks[J]. IEEE Signal Processing Letters, 2016, 23(10):1499-1503. [13] HE K, ZHANG X, REN S, et al. Delving deep into rectifiers:surpassing human-level performance on ImageNet classification[C]//ICCV 2015:Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway, NJ:IEEE, 2015:1026-1034. [14] SZEGEDY C, TOSHEV A, ERHAN D. Deep neural networks for object detection[J]. Advances in Neural Information Processing Systems, 2013, 26(1):2553-2561. [15] TOMÈ D, MONTI F, BAROFFIO L, et al. Deep convolutional neural networks for pedestrian detection[J]. Signal Processing:Image Communication, 2016, 47(1):482-489. [16] ROTHE R, GUILLAUMIN M, VAN GOOL L. Non-maximum suppression for object detection by passing messages between windows[C]//Proceedings of the 2014 Asian Conference on Computer Vision. Berlin:Springer, 2014:290-306. [17] FELZENSZWALB P, MCALLESTER D, RAMANAN D. A dis-criminatively trained, multiscale, deformable part model[C]//Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2008:1-8. [18] DOLLAR P, APPEL R, BELONGIE S, et al. Fast feature pyramids for object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(8):1532-1545. [19] ZHANG L, LIN L, LIANG X, et al. Is Faster R-CNN doing well for pedestrian detection?[C]//ECCV 2016:Proceedings of the 14th European Conference on Computer Vision. Berlin:Springer, 2016:443-457. |