1 |
TIAN C, FEI L, ZHENG W, et al. Deep learning on image denoising: an overview [J]. Neural Networks, 2020, 131: 251-275. 10.1016/j.neunet.2020.07.025
|
2 |
FERUGLIO P F, VINEGONI C, GROS J, et al. Block matching 3D random noise filtering for absorption optical projection tomography [J]. Physics in Medicine and Biology, 2010, 55(18): 5401-5415. 10.1088/0031-9155/55/18/009
|
3 |
MEI Y, FAN Y, ZHOU Y. Image super-resolution with non-local sparse attention [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 3517-3526. 10.1109/cvpr46437.2021.00352
|
4 |
CAI W, JIANG J, OUYANG S. Hyperspectral image denoising using adaptive weight graph total variation regularization and low-rank matrix recovery [J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19: 5509805. 10.1109/lgrs.2021.3113078
|
5 |
WANG Z, QIAN C, GUO D, et al. One-dimensional deep low-rank and sparse network for accelerated MRI [J]. IEEE Transactions on Medical Imaging, 2023, 42(1): 79-90. 10.1109/tmi.2022.3203312
|
6 |
ZHANG K, GAO X, TAO D, et al. Single image super-resolution with non-local means and steering kernel regression [J]. IEEE Transactions on Image Processing, 2012, 21(11): 4544-4556. 10.1109/tip.2012.2208977
|
7 |
LIU P, ZHANG H, ZHANG K, et al. Multi-level wavelet-CNN for image restoration [C]// Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2018: 773-782. 10.1109/cvprw.2018.00121
|
8 |
CHEN H, ZHANG Y, KALRA M K, et al. Low-dose CT with a residual encoder-decoder convolutional neural network [J]. IEEE Transactions on Medical Imaging, 2017, 36(12): 2524-2535. 10.1109/tmi.2017.2715284
|
9 |
LIANG T, JIN Y, LI Y, et al. EDCNN: edge enhancement-based densely connected network with compound loss for low-dose CT denoising [C]// Proceedings of the 2020 15th IEEE International Conference on Signal Processing. Piscataway: IEEE, 2020: 193-198. 10.1109/icsp48669.2020.9320928
|
10 |
GENG M, MENG X, YU J, et al. Content-noise complementary learning for medical image denoising [J]. IEEE Transactions on Medical Imaging, 2021, 41(2): 407-419. 10.1109/tmi.2021.3113365
|
11 |
WANG D, WU Z, YU H. TED-Net: Convolution-free T2T Vision Transformer-based encoder-decoder dilation network for low-dose CT denoising [C]// Proceedings of the 2021 International Workshop on Machine Learning in Medical Imaging. Cham: Springer, 2021: 416-425. 10.1007/978-3-030-87589-3_43
|
12 |
MONGA V, LI Y, ELDAR Y C. Algorithm unrolling: interpretable, efficient deep learning for signal and image processing [J]. IEEE Signal Processing Magazine, 2021, 38(2): 18-44. 10.1109/msp.2020.3016905
|
13 |
XIA W, SHAN H, WANG G, et al. Synergizing physics/model-based and data-driven methods for low-dose CT [EB/OL]. [2022-07-01]. . 10.1109/msp.2022.3204407
|
14 |
YANG Y, SUN J, LI H, et al. ADMM-CSNet: a deep learning approach for image compressive sensing [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(3): 521-538. 10.1109/tpami.2018.2883941
|
15 |
ADLER J, ÖKTEM O. Learned primal-dual reconstruction [J]. IEEE Transactions on Medical Imaging, 2018, 37(6): 1322-1332. 10.1109/tmi.2018.2799231
|
16 |
YOU D, XIE J, ZHANG J. ISTA-NET++: flexible deep unfolding network for compressive sensing [C]// Proceedings of the 2021 IEEE International Conference on Multimedia and Expo. Piscataway: IEEE, 2021: 1-6. 10.1109/icme51207.2021.9428249
|
17 |
RUDIN L I, OSHER S, FATEMI E. Nonlinear total variation based noise removal algorithms [J]. Physica D: Nonlinear Phenomena, 1992, 60(1-4): 259-268. 10.1016/0167-2789(92)90242-f
|
18 |
TIAN C, ZHENG M, ZUO W, et al. Multi-stage image denoising with the wavelet transform [J]. Pattern Recognition, 2023, 134: 109050. 10.1016/j.patcog.2022.109050
|
19 |
LI J, ZHU Q, WU Y, et al. Image reconstruction based on deep iterative shrinkage network [C]// Proceedings of the 2021 6th International Conference on Image, Vision and Computing. Piscataway: IEEE, 2021: 259-263. 10.1109/icivc52351.2021.9526952
|
20 |
王心,朱浩华,刘光灿.卷积鲁棒主成分分析[J].计算机应用,2021,41(5):1314-1318.
|
|
WANG X, ZHU H H, LIU G C. Convolution robust principal component analysis [J]. Journal of Computer Applications, 2021, 41(5): 1314-1318.
|
21 |
CHAMBOLLE A, POCK T. A first-order primal-dual algorithm for convex problems with applications to imaging [J]. Journal of Mathematical Imaging and Vision, 2011, 40: 120-145. 10.1007/s10851-010-0251-1
|
22 |
PELT D M, BATENBURG K J. Improving filtered backprojection reconstruction by data-dependent filtering [J]. IEEE Transactions on Image Processing, 2014, 23(11): 4750-4762. 10.1109/tip.2014.2341971
|
23 |
席雅睿,乔志伟,温静,等.基于Chambolle-Pock算法框架的高阶TV图像重建算法[J].计算机应用,2020,40(6):1793-1798.
|
|
XI Y R, QIAO Z W, WEN J, et al. High order TV image reconstruction algorithm based on Chambolle-Pock algorithm framework [J]. Journal of Computer Applications, 2020, 40(6): 1793-1798.
|
24 |
MEINHARDT T, MOELLER M, HAZIRBAS C, et al. Learning proximal operators: using denoising networks for regularizing inverse imaging problems [C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 1781-1790. 10.1109/iccv.2017.198
|
25 |
HORÉ A, ZIOU D. Image quality metrics: PSNR vs. SSIM [C]// Proceedings of the 2010 20th International Conference on Pattern Recognition. Piscataway: IEEE, 2010: 2366-2369. 10.1109/icpr.2010.579
|
26 |
SHEIKH H R, BOVIK A C. Image information and visual quality[J]. IEEE Transactions on Image Processing, 2006, 15(2): 430-444. 10.1109/tip.2005.859378
|
27 |
American Association of Physicists in Medicine. Low dose CT grand challenge [DS/OL]. [2021-04-20]. . 10.1118/1.4957556
|