[1] OSIA N, BOURLAI T. A spectral independent approach for physiological and geometric based face recognition in the visible, middle-wave and long-wave infrared bands[J]. Image and Vision Computing, 2014, 32(11):847-859. [2] PAN Z, HEALEY G E, PRASCAD M, et al. Face recognition in hyperspectral images[C]//Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2003:334-339. [3] CHANG H, KOSCHAN A, ABIDI B, et al. Fusing continuous spectral images for face recognition under indoor and outdoor illuminants[J]. Machine Vision and Applications, 2010, 21(2):201-215. [4] DI W, ZHANG L, ZHANG D. Studies on hyperspectral face recognition in visible spectrum with feature band selection[J]. IEEE Transactions on Systems, Man and Cybernetics-Part A:Systems and Humans, 2010, 40(6):1354-1361. [5] UZAIR M, MAHMOOD A, MIAN A. Hyperspectral face recognition with spatiospectral information fusion and PLS regression[J]. IEEE Transactions on Image Processing, 2015, 24(3):1127-1137. [6] 魏冬梅, 张立人, 胡楠楠,等. 联合空谱信息和Gabor特征的高光谱人脸识别算法[J]. 北京理工大学学报,2017,37(10):1077-1083. (WEI D M, ZHANG L R, HU N N, et al. Hyperspectral face recognition with spatial-spectral fusion information and Gabor feature[J]. Transactions of Beijing Institute of Technology, 2017, 37(10):1077-1083.) [7] GHASEMZADEH A, DEMIREL H. 3D discrete wavelet transform-based feature extraction for hyperspectral face recognition[J]. IET Biometrics, 2018, 7(1):49-55 [8] ZHANG K, ZHANG Z, LI Z, et al. Joint face detection and alignment using multi-task cascaded convolution networks[J]. IEEE Signal Processing Letters, 2016, 23(10):1499-1503. [9] 杨楠, 南琳, 张丁一, 等. 基于深度学习的图像描述研究[J]. 红外与激光工程,2018,47(2):203002. (YANG N, NAN L, ZHANG D Y, et al. Research on image interpretation based on deep learning[J]. Infrared and Laser Engineering, 2018, 47(2):203002.) [10] SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2015:1-9. [11] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL].[2018-03-22]. https://arxiv.org/pdf/1409.1556.pdf. [12] 张国山, 张培崇, 王欣博. 基于多层次特征差异图的视觉场景识[J]. 红外与激光工程, 2018, 47(2):203004. (ZHANG G S, ZHANG P C, WANG X B, Visual place recognition based on multi-level feature difference map[J]. Infrared and Laser Engineering, 2018, 47(2):203004.) [13] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe, Nevada:Curran Associates Inc., 2012, 1:1097-1105. [14] MOLLAHOSSEINI A, CHAN D, MAHOOR M H. Going deeper in facial expression recognition using deep neural networks[C]//Proceedings of the 2016 IEEE Winter Conference on Applications of Computer Vision. Piscataway, NJ:IEEE, 2016:1-10. [15] SUN Y, WANG X, TANG X O. Deep learning face representation from predicting 10000 classes[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2014:1891-1898. [16] TAIGMAN Y, YANG M, RANZATO M, et al. DeepFace:closing the gap to human-level performance in face verification[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2014:1701-1708. [17] IOFFE S, SZEGEDY C. Batch normalization:accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the 32nd International Conference on Machine Learning.[S.l.]:ICML, 2015:448-456. |