[1] NEGI S. Suggestion mining from opinionated text[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics-Student Research Workshop. Stroudsburg, PA:Association for Computational Linguistics, 2016:7-12. [2] BRUN C, HAGEGE C. Suggestion mining:detecting suggestions for improvement in users' comments[J]. Research in Computing Science, 2013, 70:171-181. [3] RAMANAND J, BHAVSAR K, PEDANEKAR N. Wishful thinking:finding suggestions and ‘buy’ wishes from product reviews[C]//Proceedings of the NAACL HLT 2010 Workshop on Computational Approaches to Analysis and Generation of Emotion in Text. Stroudsburg, PA:Association for Computational Linguistics, 2010:54-61. [4] WICAKSONO A F, MYAENG S-H. Automatic extraction of advice-revealing sentences for advice mining from online forums[C]//Proceedings of the 7th International Conference on Knowledge Capture. New York:ACM, 2013:97-104. [5] DONG L, WEI F, DUAN Y, et al. The automated acquisition of suggestions from tweets[C]//Proceedings of the 27th AAAI Conference on Artificial Intelligence. Menlo Park, CA:AAAI Press, 2013:239-245. [6] NEGI S, ASOOJA K, MEHROTRA S, et al. A study of suggestions in opinionated texts and their automatic detection[C]//Proceedings of the 5th Joint Conference on Lexical and Computational Semantics. Stroudsburg, PA:Association for Computational Linguistics, 2016:170-178. [7] 张璞,刘畅,王永.基于特征融合和集成学习的建议语句分类模型[J].山东大学学报(工学版),2018,48(5):47-54.(ZHANG P, LIU C, WANG Y. Suggestion sentence classification model based on feature fusion and ensemble learning[J]. Journal of Shandong University (Engineering Science), 2018, 48(5):47-54.) [8] ZHANG Q C, YANG L T, CHEN Z K. Deep computation model for unsupervised feature learning on big data[J]. IEEE Transactions on Services Computing, 2016, 9(1):161-171. [9] LIU B, LEE W S, YU P S, et al. Partially supervised classification of text documents[C]//Proceedings of the 19th International Conference on Machine Learning. San Francisco, CA:Morgan Kaufmann Publishers, 2002:387-394. [10] 任亚峰,姬东鸿,张红斌,等.基于PU学习算法的虚假评论识别研究[J].计算机研究与发展,2015,52(3):639-648.(REN Y F, JI D H, ZHANG H B, et al. Deceptive reviews detection based on positive and unlabeled learning[J]. Journal of Computer Research and Development, 2015, 52(3):639-648.) [11] 刘露,彭涛,左万利,等.一种基于聚类的PU主动文本分类方法[J].软件学报,2013,24(11):2571-2583.(LIU L, PENG T, ZUO W L, et al. Clustering-based PU active text classification method[J]. Journal of Software, 2013, 24(11):2571-2583.) [12] 王宗尧,刘金岭.基于支持向量机的PU中文文本分类器构建[J].南京邮电大学学报(自然科学版),2015,35(6):100-105.(WANG Z Y, LIU J L. PU Chinese text classifier based on support vector machine construction[J]. Journal of Nanjing University of Posts and Telecommunications (Natural Science Edition), 2015, 35(6):100-105.) [13] LIU B, DAI Y, LI X, et al. Building text classifiers using positive and unlabeled examples[C]//Proceedings of the 3rd IEEE International Conference on Data Mining. Washington, DC:IEEE Computer Society, 2003:179-188. [14] WLODARCZAK P, SOAR J, ALLY M. Multimedia data mining using deep learning[C]//Proceedings of the 20155th International Conference on Digital Information Processing and Communications. Piscataway, NJ:IEEE, 2015:190-196. [15] ZHOU H, CHEN L, HUANG D. Cross-lingual sentiment classification based on denoising autoencoder[M]//ZONG C, NIE J Y, ZHAO D, et al. Natural Language Processing and Chinese Computing, CCIS 496. Berlin:Springer, 2014:181-192. [16] 魏超,罗森林,张竞,等.自编码网络短文本流形表示方法[J].浙江大学学报(工学版),2015,49(8):1591-1599.(WEI C, LUO S L, ZHANG J, et al. Short text manifold representation based on AutoEncoder network[J]. Journal of Zhejiang University (Engineering Science), 2015, 49(8):1591-1599.) [17] 高妮,高岭,贺毅岳,等.基于自编码网络特征降维的轻量级入侵检测模型[J].电子学报,2017,45(3):730-739.(GAO N, GAO L, HE Y Y, et al. A lightweight intrusion detection model based on autoencoder network with feature reduction[J]. Acta Electronica Sinica, 2017, 45(3):730-739.) [18] ZHU Z, WANG X, BAI S, et al. Deep learning representation using autoencoder for 3D shape retrieval[J]. Neurocomputing, 2016, 204(C):41-50. [19] LE Q, MKOLOV T. Distributed representations of sentences and documents[EB/OL].[2018-06-20]. https://arxiv.org/pdf/1405.4053v2.pdf. [20] LI X, LIU B. Learning to classify texts using positive and unlabeled data[C]//Proceedings of the 18th International Joint Conference on Artificial Intelligence. San Francisco, CA:Morgan Kaufmann Publishers, 2003:587-592. |