Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (11): 3411-3418.DOI: 10.11772/j.issn.1001-9081.2023111681
• Data science and technology • Previous Articles Next Articles
Received:
2023-12-05
Revised:
2024-05-01
Accepted:
2024-05-10
Online:
2024-05-30
Published:
2024-11-10
Contact:
Xiaopan SU
About author:
QIU Liqing, born in 1978, Ph. D., associate professor. Her research interests include social network, recommender system.
Supported by:
通讯作者:
苏小盼
作者简介:
仇丽青(1978—),女,山东德州人,副教授,博士,主要研究方向:社交网络、推荐系统
基金资助:
CLC Number:
Liqing QIU, Xiaopan SU. Personalized multi-layer interest extraction click-through rate prediction model[J]. Journal of Computer Applications, 2024, 44(11): 3411-3418.
仇丽青, 苏小盼. 个性化多层兴趣提取点击率预测模型[J]. 《计算机应用》唯一官方网站, 2024, 44(11): 3411-3418.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023111681
数据集 | 用户数 | 项目数 | 产品类别数 | 样本数 |
---|---|---|---|---|
Taobao | 1 141 729 | 846 811 | 12 960 | 1 366 056 |
MovieLens | 943 | 1 447 | 19 | 108 866 |
Book | 603 668 | 367 982 | 1 600 | 603 668 |
Electronics | 192 403 | 63 001 | 801 | 192 403 |
Auazu | 4 904 | 4 737 | 26 | 6 865 066 |
Tab. 1 Experimental datasets
数据集 | 用户数 | 项目数 | 产品类别数 | 样本数 |
---|---|---|---|---|
Taobao | 1 141 729 | 846 811 | 12 960 | 1 366 056 |
MovieLens | 943 | 1 447 | 19 | 108 866 |
Book | 603 668 | 367 982 | 1 600 | 603 668 |
Electronics | 192 403 | 63 001 | 801 | 192 403 |
Auazu | 4 904 | 4 737 | 26 | 6 865 066 |
模型 | Taobao | MovieLens | Book | ||||||
---|---|---|---|---|---|---|---|---|---|
GAUC | AUC | RelaImpr | GAUC | AUC | RelaImpr | GAUC | AUC | RelaImpr | |
BaseModel | 0.625 7 | 0.627 9 | 0.000 0 | 0.599 8 | 0.619 7 | 0.000 0 | 0.628 9 | 0.631 5 | 0.000 0 |
Wide & Deep | 0.632 1 | 0.633 4 | 0.050 9 | 0.619 9 | 0.621 0 | 0.201 4 | 0.614 9 | 0.634 7 | 0.108 6 |
PNN | 0.634 5 | 0.632 4 | 0.070 0 | 0.622 3 | 0.625 5 | 0.225 4 | 0.648 4 | 0.648 9 | 0.151 2 |
DIN | 0.652 1 | 0.654 2 | 0.210 0 | 0.631 0 | 0.631 2 | 0.312 6 | 0.651 3 | 0.651 4 | 0.173 7 |
DIEN | 0.654 1 | 0.656 4 | 0.225 9 | 0.631 8 | 0.632 0 | 0.320 6 | 0.661 2 | 0.662 4 | 0.250 5 |
DMIN | 0.693 4 | 0.695 7 | 0.538 5 | 0.645 1 | 0.652 3 | 0.453 9 | 0.694 8 | 0.695 5 | 0.511 2 |
DMR | 0.684 7 | 0.688 7 | 0.469 3 | 0.635 2 | 0.643 8 | 0.354 7 | 0.692 4 | 0.696 4 | 0.492 6 |
FAT | 0.684 9 | 0.697 8 | 0.470 9 | 0.631 0 | 0.632 5 | 0.312 6 | 0.662 4 | 0.663 7 | 0.259 8 |
NIIN | 0.685 2 | 0.698 9 | 0.473 3 | 0.632 0 | 0.642 5 | 0.322 6 | 0.665 4 | 0.664 7 | 0.283 1 |
PMIC | 0.736 8 | 0.742 0 | 0.883 8 | 0.639 8 | 0.667 5 | 0.400 8 | 0.705 9 | 0.712 4 | 0.597 3 |
模型 | Electronics | Auazu | |||||||
GAUC | AUC | RelaImpr | GAUC | AUC | RelaImpr | ||||
BaseModel | 0.600 1 | 0.619 9 | 0.000 0 | 0.626 7 | 0.631 0 | 0.000 0 | |||
Wide & Deep | 0.620 0 | 0.621 5 | 0.198 8 | 0.638 1 | 0.640 1 | 0.089 9 | |||
PNN | 0.624 3 | 0.627 5 | 0.241 7 | 0.638 5 | 0.642 3 | 0.093 1 | |||
DIN | 0.632 3 | 0.634 2 | 0.321 6 | 0.657 9 | 0.658 4 | 0.246 2 | |||
DIEN | 0.640 1 | 0.642 2 | 0.399 6 | 0.658 6 | 0.659 3 | 0.251 7 | |||
DMIN | 0.645 5 | 0.652 4 | 0.453 5 | 0.689 4 | 0.699 1 | 0.494 8 | |||
DMR | 0.638 2 | 0.644 0 | 0.380 6 | 0.688 7 | 0.699 9 | 0.489 3 | |||
FAT | 0.639 0 | 0.645 1 | 0.388 6 | 0.687 2 | 0.688 4 | 0.477 5 | |||
NIIN | 0.632 4 | 0.644 3 | 0.322 6 | 0.687 5 | 0.680 0 | 0.479 8 | |||
PMIC | 0.663 5 | 0.672 1 | 0.633 3 | 0.743 5 | 0.752 3 | 0.936 0 |
Tab.2 Model comparison experimental results
模型 | Taobao | MovieLens | Book | ||||||
---|---|---|---|---|---|---|---|---|---|
GAUC | AUC | RelaImpr | GAUC | AUC | RelaImpr | GAUC | AUC | RelaImpr | |
BaseModel | 0.625 7 | 0.627 9 | 0.000 0 | 0.599 8 | 0.619 7 | 0.000 0 | 0.628 9 | 0.631 5 | 0.000 0 |
Wide & Deep | 0.632 1 | 0.633 4 | 0.050 9 | 0.619 9 | 0.621 0 | 0.201 4 | 0.614 9 | 0.634 7 | 0.108 6 |
PNN | 0.634 5 | 0.632 4 | 0.070 0 | 0.622 3 | 0.625 5 | 0.225 4 | 0.648 4 | 0.648 9 | 0.151 2 |
DIN | 0.652 1 | 0.654 2 | 0.210 0 | 0.631 0 | 0.631 2 | 0.312 6 | 0.651 3 | 0.651 4 | 0.173 7 |
DIEN | 0.654 1 | 0.656 4 | 0.225 9 | 0.631 8 | 0.632 0 | 0.320 6 | 0.661 2 | 0.662 4 | 0.250 5 |
DMIN | 0.693 4 | 0.695 7 | 0.538 5 | 0.645 1 | 0.652 3 | 0.453 9 | 0.694 8 | 0.695 5 | 0.511 2 |
DMR | 0.684 7 | 0.688 7 | 0.469 3 | 0.635 2 | 0.643 8 | 0.354 7 | 0.692 4 | 0.696 4 | 0.492 6 |
FAT | 0.684 9 | 0.697 8 | 0.470 9 | 0.631 0 | 0.632 5 | 0.312 6 | 0.662 4 | 0.663 7 | 0.259 8 |
NIIN | 0.685 2 | 0.698 9 | 0.473 3 | 0.632 0 | 0.642 5 | 0.322 6 | 0.665 4 | 0.664 7 | 0.283 1 |
PMIC | 0.736 8 | 0.742 0 | 0.883 8 | 0.639 8 | 0.667 5 | 0.400 8 | 0.705 9 | 0.712 4 | 0.597 3 |
模型 | Electronics | Auazu | |||||||
GAUC | AUC | RelaImpr | GAUC | AUC | RelaImpr | ||||
BaseModel | 0.600 1 | 0.619 9 | 0.000 0 | 0.626 7 | 0.631 0 | 0.000 0 | |||
Wide & Deep | 0.620 0 | 0.621 5 | 0.198 8 | 0.638 1 | 0.640 1 | 0.089 9 | |||
PNN | 0.624 3 | 0.627 5 | 0.241 7 | 0.638 5 | 0.642 3 | 0.093 1 | |||
DIN | 0.632 3 | 0.634 2 | 0.321 6 | 0.657 9 | 0.658 4 | 0.246 2 | |||
DIEN | 0.640 1 | 0.642 2 | 0.399 6 | 0.658 6 | 0.659 3 | 0.251 7 | |||
DMIN | 0.645 5 | 0.652 4 | 0.453 5 | 0.689 4 | 0.699 1 | 0.494 8 | |||
DMR | 0.638 2 | 0.644 0 | 0.380 6 | 0.688 7 | 0.699 9 | 0.489 3 | |||
FAT | 0.639 0 | 0.645 1 | 0.388 6 | 0.687 2 | 0.688 4 | 0.477 5 | |||
NIIN | 0.632 4 | 0.644 3 | 0.322 6 | 0.687 5 | 0.680 0 | 0.479 8 | |||
PMIC | 0.663 5 | 0.672 1 | 0.633 3 | 0.743 5 | 0.752 3 | 0.936 0 |
模型 | Taobao | MovieLens | Book | Electronics | Auazu | |||||
---|---|---|---|---|---|---|---|---|---|---|
GAUC | AUC | GAUC | AUC | GAUC | AUC | GAUC | AUC | GAUC | AUC | |
PMIC-type | 0.712 4 | 0.718 9 | 0.637 7 | 0.649 6 | 0.701 7 | 0.702 3 | 0.637 9 | 0.650 1 | 0.720 1 | 0.723 4 |
PMIC-Aux | 0.685 0 | 0.688 9 | 0.636 9 | 0.644 1 | 0.693 3 | 0.697 4 | 0.625 1 | 0.633 3 | 0.693 1 | 0.698 4 |
PMIC-selfattention-Aux | 0.653 0 | 0.657 8 | 0.601 7 | 0.602 4 | 0.664 7 | 0.665 8 | 0.612 5 | 0.621 3 | 0.660 1 | 0.673 2 |
PMIC | 0.736 8 | 0.742 0 | 0.639 8 | 0.667 5 | 0.705 9 | 0.712 4 | 0.642 1 | 0.645 5 | 0.743 5 | 0.745 1 |
Tab.3 Ablation experimental results
模型 | Taobao | MovieLens | Book | Electronics | Auazu | |||||
---|---|---|---|---|---|---|---|---|---|---|
GAUC | AUC | GAUC | AUC | GAUC | AUC | GAUC | AUC | GAUC | AUC | |
PMIC-type | 0.712 4 | 0.718 9 | 0.637 7 | 0.649 6 | 0.701 7 | 0.702 3 | 0.637 9 | 0.650 1 | 0.720 1 | 0.723 4 |
PMIC-Aux | 0.685 0 | 0.688 9 | 0.636 9 | 0.644 1 | 0.693 3 | 0.697 4 | 0.625 1 | 0.633 3 | 0.693 1 | 0.698 4 |
PMIC-selfattention-Aux | 0.653 0 | 0.657 8 | 0.601 7 | 0.602 4 | 0.664 7 | 0.665 8 | 0.612 5 | 0.621 3 | 0.660 1 | 0.673 2 |
PMIC | 0.736 8 | 0.742 0 | 0.639 8 | 0.667 5 | 0.705 9 | 0.712 4 | 0.642 1 | 0.645 5 | 0.743 5 | 0.745 1 |
1 | 罗凯耀,孙伟智,唐云. 融合注意力机制的广告点击率预测模型[J].微型电脑应用, 2023, 39(5):36-38. |
LUO K Y, SUN W Z, TANG Y. Advertising click-through rate prediction model based on attention mechanism[J]. Microcomputer Applications, 2023, 39(5): 36-38. | |
2 | 龚雪鸾,陈艳姣,王帅.在线广告点击率预测方法的研究综述[J].中文信息学报,2023,37(4):1-17. |
GONG X L, CHEN Y J, WANG S. A review of click-through rate prediction approaches for online advertising[J]. Journal of Chinese Information Processing, 2023, 37(4):1-17. | |
3 | McMAHAN H B, HOLT G, SCULLEY D, et al. Ad click prediction: a view from the trenches[C]// Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2013: 1222-1230. |
4 | GAI K, ZHU X, LI H, et al. Learning piece-wise linear models from large scale data for ad click prediction[EB/OL]. [2024-03-19].. |
5 | RENDLE S. Factorization machines[C]// Proceedings of the 2010 IEEE International Conference on Data Mining. Piscataway: IEEE, 2010: 995-1000. |
6 | HE X, PAN J, JIN O, et al. Practical lessons from predicting clicks on ads at Facebook[C]// Proceedings of the 8th International Workshop on Data Mining for Online Advertising. New York: ACM, 2014: 1-9. |
7 | ZHANG W, DU T, WANG J. Deep learning over multi-field categorical data — a case study on user response prediction[C]// Proceedings of the 2016 European Conference on Information Retrieval, LNCS 9626. Cham: Springer, 2016: 45-57. |
8 | 林晓颖.人工智能时代的互联网广告:基于深度学习技术的广告推荐系统[J].吉林广播电视大学学报,2020(8):143-145. |
LIN X Y. Internet advertising in the age of artificial intelligence: an advertising recommendation system based on deep learning technology[J]. Journal of Jilin Radio and Television University, 2020(8): 143-145. | |
9 | 李俊毅,陈碧欢,彭鑫,等.DeepLabel:基于深度学习的问题单分类方法研究[J].计算机应用与软件,2022,39(4):170-178. |
LI J Y, CHEN B H, PENG X, et al. DeepLabel: labeling issues based on deep learning[J]. Computer Applications and Software, 2022, 39(4):170-178. | |
10 | COVINGTON P, ADAMS J, SARGIN E. Deep neural networks for YouTube recommendations[C]// Proceedings of the 10th ACM Conference on Recommender Systems. New York: ACM, 2016: 191-198. |
11 | ZHOU G, ZHU X, SONG C, et al. Deep interest network for click-through rate prediction[C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2018: 1059-1068. |
12 | ZHOU G, MOU N, FAN Y, et al. Deep interest evolution network for click-through rate prediction[C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2019: 5941-5948. |
13 | LYU Z, DONG Y, HUO C, et al. Deep match to rank model for personalized click-through rate prediction[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2020: 156-163. |
14 | 王淼,李大为.基于内容与协同过滤的混合推荐算法在数字科技馆中的应用[J].网络安全技术与应用,2023(8):37-39. |
WANG M, LI D W. Application of hybrid recommendation algorithm based on content and collaborative filtering in digital science museum[J]. Network Security Technology and Application, 2023(8):37-39. | |
15 | HINTON G E, SRIVASTAVA N, KRIZHEVSKY A, et al. Improving neural networks by preventing co-adaptation of feature detectors[EB/OL]. [2024-01-22]. . |
16 | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. |
17 | BA J L, KIROS J R, HINTON G E. Layer normalization[EB/OL]. [2024-02-01]. . |
18 | DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional Transformers for language understanding[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Stroudsburg, PA: ACL, 2019: 4171-4186. |
19 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017: 6000-6010. |
20 | LU Y, ZHANG S, HUANG Y, et al. Future-aware diverse trends framework for recommendation[C]// Proceedings of the Web Conference 2021. New York: ACM, 2021: 2992-3001. |
21 | ZHAO K, ZHAO X, CAO Q, et al. A non-sequential approach to deep user interest model for CTR prediction[C]// Proceedings of the 2022 SIAM International Conference on Data Mining. Philadelphia, PA: SIAM, 2022: 531-539. |
22 | CHENG H T, KOC L, HARMSEN J, et al. Wide & Deep learning for recommender systems[C]// Proceedings of the 1st Workshop on Deep Learning for Recommender Systems. New York: ACM, 2016: 7-10. |
23 | QU Y, CAI H, REN K, et al. Product-based neural networks for user response prediction[C]// Proceedings of the IEEE 16th International Conference on Data Mining. Piscataway: IEEE, 2016: 1149-1154. |
24 | XIAO Z, YANG L, JIANG W, et al. Deep multi-interest network for click-through rate prediction[C]// Proceedings of the 29th ACM International Conference on Information and Knowledge Management. New York: ACM, 2020: 2265-2268. |
[1] | Yexin PAN, Zhe YANG. Optimization model for small object detection based on multi-level feature bidirectional fusion [J]. Journal of Computer Applications, 2024, 44(9): 2871-2877. |
[2] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[3] | Xiyuan WANG, Zhancheng ZHANG, Shaokang XU, Baocheng ZHANG, Xiaoqing LUO, Fuyuan HU. Unsupervised cross-domain transfer network for 3D/2D registration in surgical navigation [J]. Journal of Computer Applications, 2024, 44(9): 2911-2918. |
[4] | Yunchuan HUANG, Yongquan JIANG, Juntao HUANG, Yan YANG. Molecular toxicity prediction based on meta graph isomorphism network [J]. Journal of Computer Applications, 2024, 44(9): 2964-2969. |
[5] | Shunyong LI, Shiyi LI, Rui XU, Xingwang ZHAO. Incomplete multi-view clustering algorithm based on self-attention fusion [J]. Journal of Computer Applications, 2024, 44(9): 2696-2703. |
[6] | Tingjie TANG, Jiajin HUANG, Jin QIN, Hui LU. Session-based recommendation based on graph co-occurrence enhanced multi-layer perceptron [J]. Journal of Computer Applications, 2024, 44(8): 2357-2364. |
[7] | Chunxue ZHANG, Liqing QIU, Cheng’ai SUN, Caixia JING. Purchase behavior prediction model based on two-stage dynamic interest recognition [J]. Journal of Computer Applications, 2024, 44(8): 2365-2371. |
[8] | Yuhan LIU, Genlin JI, Hongping ZHANG. Video pedestrian anomaly detection method based on skeleton graph and mixed attention [J]. Journal of Computer Applications, 2024, 44(8): 2551-2557. |
[9] | Yanjie GU, Yingjun ZHANG, Xiaoqian LIU, Wei ZHOU, Wei SUN. Traffic flow forecasting via spatial-temporal multi-graph fusion [J]. Journal of Computer Applications, 2024, 44(8): 2618-2625. |
[10] | Qianhong SHI, Yan YANG, Yongquan JIANG, Xiaocao OUYANG, Wubo FAN, Qiang CHEN, Tao JIANG, Yuan LI. Multi-granularity abrupt change fitting network for air quality prediction [J]. Journal of Computer Applications, 2024, 44(8): 2643-2650. |
[11] | Yiqun ZHAO, Zhiyu ZHANG, Xue DONG. Anisotropic travel time computation method based on dense residual connection physical information neural networks [J]. Journal of Computer Applications, 2024, 44(7): 2310-2318. |
[12] | Song XU, Wenbo ZHANG, Yifan WANG. Lightweight video salient object detection network based on spatiotemporal information [J]. Journal of Computer Applications, 2024, 44(7): 2192-2199. |
[13] | Xun SUN, Ruifeng FENG, Yanru CHEN. Monocular 3D object detection method integrating depth and instance segmentation [J]. Journal of Computer Applications, 2024, 44(7): 2208-2215. |
[14] | Zheng WU, Zhiyou CHENG, Zhentian WANG, Chuanjian WANG, Sheng WANG, Hui XU. Deep learning-based classification of head movement amplitude during patient anaesthesia resuscitation [J]. Journal of Computer Applications, 2024, 44(7): 2258-2263. |
[15] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||