[1] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. North Miami Beach, FL:Curran Associates Inc., 2012:1097-1105. [2] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL].[2018-10-15]. https://arxiv.org/pdf/1409.1556.pdf. [3] SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2015:1-9. [4] RYOO M S. Human activity prediction:early recognition of ongoing activities from streaming videos[C]//Proceedings of the 2011 IEEE International Conference on Computer Vision. Piscataway, NJ:IEEE, 2011:1036-1043. [5] ZHU S, JIA Y, PEI M. Parsing video events with goal inference and intent prediction[C]//Proceedings of the 2011 International Conference on Computer Vision. Piscataway, NJ:IEEE, 2011:487-494. [6] VONDRICK C, PIRSIAVASH H, TORRALBA A. Anticipating visual representations from unlabeled video[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2016:98-106. [7] KOOIJ J F P, SCHNEIDER N, FLOHR F,et al. Context-based pedestrian path prediction[C]//Proceedings of the 2014 European Conference on Computer Vision, LNCS 8694. Berlin:Springer, 2014:618-633. [8] WALKER J, GUPTA A, HEBERT M. Dense optical flow prediction from a static image[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway, NJ:IEEE, 2015:2443-2451. [9] MOTTAGHI R, RASTEGARI M, GUPTA A, et al. "What happens if…" learning to predict the effect of forces in images[C]//Proceedings of the 2016 European Conference on Computer Vision, LNCS 9908. Berlin:Springer, 2016:269-285. [10] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8):1735-1780. [11] ELMAN J L. Distributed representations, simple recurrent net-works, and grammatical structure[J]. Machine Learning, 1991, 7(2/3):195-225. [12] 李洋,董红斌.基于CNN和BiLSTM网络特征融合的文本情感分析[J].计算机应用,2018,38(11):3075-3080.(LI Y, DONG H B. Text sentiment analysis based on feature fusion of convolution neural network and bidirectional long short-term memory network[J]. Journal of Computer Applications, 2018, 38(11):3075-3080.) [13] 姚煜,RYAD C.基于双向长短时记忆联结时序分类和加权有限状态转换器的端到端中文语音识别系统[J].计算机应用,2018,38(9):2495-2499.(YAO W, RYAD C. End-to-end Chinese speech recognition system based on bidirectional long-term memory-timed timing classification and weighted finite state converter[J]. Journal of Computer Applications, 2018, 38(9):2495-2499.) [14] SUTSKEVER I, VINYALS O, LE Q V. Sequence to sequence learning with neural networks[C]//Proceedings of the 2014 Neural Information Processing Systems Conference. Cambridge, MA:MIT Press, 2014:3104-3112. [15] BENGIO Y, SIMARD P, FRASCONI P. Learning long-term dependencies with gradient descent is difficult[J]. IEEE Transactions on Neural Networks, 1994, 5(2):157-166. [16] SHI X J, CHEN Z R, WANG H, et al. Convolutional LSTM network:a machine learning approach for precipitation nowcasting[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems. Cambridge, MA:MIT Press, 2015:802-810. [17] MOLLAHOSSEINI A, CHAN D, MAHOOR M H. Going deeper in facial expression recognition using deep neural networks[C]//Proceedings of the 2016 IEEE Winter Conference on Applications of Computer Vision. Piscataway, NJ:IEEE, 2016:1-10. [18] IOFFE S, SZEGEDY C. Batch normalization:accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the 32nd International Conference on International Conference on Machine Learning. Cambridge, MA:MIT Press, 2015:448-486. [19] LESHNO M, LIN V Y, PINKUS A, et al. Original contribution:multilayer feedforward networks with a nonpolynomial activation function can approximate any function[J]. Neural Networks, 1991, 6(6):861-867. |