[1] FENG F,LI W,DU Q,et al. Dimensionality reduction of hyperspectral image with graph-based discriminant analysis considering spectral similarity[J]. Remote Sensing,2017,9(4):No. 323. [2] LEE H,KWON H. Going deeper with contextual CNN for hyperspectral image classification[J]. IEEE Transactions on Image Processing,2017,26(10):4843-4855. [3] PETROPOULOS G P,KALAITZIDIS C,VADREVU K P. Support vector machines and object-based classification for obtaining land-use/cover cartography from Hyperion hyperspectral imagery[J]. Computers and Geosciences,2012,41:99-107. [4] LIAO W,BELLENS R,PIZURICA A,et al. Classification of hyperspectral data over urban areas using directional morphological profiles and semi-supervised feature extraction[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2012,5(4):1177-1190. [5] BIOUCAS-DIAS J M,PLAZA A,CAMPS-VALLS G,et al. Hyperspectral remote sensing data analysis and future challenges[J]. IEEE Geoscience and Remote Sensing Magazine,2013,1(2):6-36. [6] YANG L,WANG M,YANG S,et al. Sparse spatio-spectral LapSVM with semisupervised kernel propagation for hyperspectral image classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2017,10(5):2046-2054. [7] ZHENG Z,ZHENG L,YANG Y. Pedestrian alignment network for large-scale person re-identification[J]. IEEE Transactions on Circuits and Systems for Video Technology,2019,29(10):3037-3045. [8] LONG J,SHELHAMER E,DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2015:3431-3440. [9] CHEN Y,LIN Z,ZHAO X,et al. Deep learning-based classification of hyperspectral data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2014,7(6):2094-2107. [10] CHEN Y,ZHAO X,JIA X. Spectral-spatial classification of hyperspectral data based on deep belief network[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2015,8(6):2381-2392. [11] CHEN Y,JIANG H,LI C,et al. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing,2016,54(10):6232-6251. [12] LI Y,ZHANG H,SHEN Q. Spectral-spatial classification of hyperspectral imagery with 3D convolutional neural network[J]. Remote Sensing,2017,9(1):No. 67. [13] ZHANG H,LI Y,ZHANG Y,et al. Spectral-spatial classification of hyperspectral imagery using a dual-channel convolutional neural network[J]. Remote Sensing Letters,2017,8(5):438-447. [14] MOU L,GHAMISI P,ZHU X. Deep recurrent neural networks for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing,2017,55(7):3639-3655. [15] LEE D H. Pseudo-label:the simple and efficient semi-supervised learning method for deep neural networks[EB/OL].[2019-04-21]. http://pdfs.semanticscholar.org/798d/9840d2439a0e5d47bcf5d164aa46d5e7dc26.pdf. [16] WU H,PRASAD S. Semi-supervised deep learning using pseudo labels for hyperspectral image classification[J]. IEEE Transactions on Image Processing,2018,27(3):1259-1270. [17] 李绣心, 凌志刚, 邹文. 基于卷积神经网络的半监督高光谱图像分类[J]. 电子测量与仪器学报,2018,32(10):95-102.((LI X X,LING Z G,ZOU W. Semi-supervised learning via convolutional neural network for hyperspectral image classification[J]. Journal of Electronic Measurement and Instrumentation,2018,32(10):95-102.)) [18] KIPF T N,WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL].[2019-04-21]. https://arxiv.org/pdf/1609.02907.pdf. [19] MA X,WANG H,WANG J. Semisupervised classification for hyperspectral image based on multi-decision labeling and deep feature learning[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2016,120:99-107. [20] YAN Q,DING Y,XIA Y,et al. Class probability propagation of supervised information based on sparse subspace clustering for hyperspectral images[J]. Remote Sensing, 2017, 9(10):No. 1017. [21] ZHAI H,ZHANG H,ZHANG L,et al. A new sparse subspace clustering algorithm for hyperspectral remote sensing imagery[J]. IEEE Geoscience and Remote Sensing Letters,2017,14(1):43-47. [22] WEN Y, ZHANG K, LI Z, et al. A discriminative feature learning approach for deep face recognition[C]//Proceedings of the 2016 European Conference on Computer Vision,LNCS 9911. Cham:Springer,2016:499-515. [23] LIU W,WEN Y,YU Z,et al. Large-margin softmax loss for convolutional neural networks[C]//Proceedings of the 33rd International Conference on Machine Learning. New York:JMLR. org, 2016:507-516. [24] LIN T Y,GOYAL P,GIRSHICK R,et al. Focal loss for dense object detection[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE,2017:2999-3007. [25] LI J,BIOUCAS-DIAS J M,PLAZA A. Semisupervised hyperspectral image segmentation using multinomial logistic regression with active learning[J]. IEEE Transactions on Geoscience and Remote Sensing,2010,48(11):4085-4098. [26] CAO X,XU L,MENG D,et al. Integration of 3-dimensional discrete wavelet transform and Markov random field for hyperspectral image classification[J]. Neurocomputing,2017,226:90-100. [27] XU J,XU K,CHEN K,et al. Reweighted sparse subspace clustering[J]. Computer Vision and Image Understanding,2015, 138:25-37. [28] PENG X,ZHANG L,YI Z. Scalable sparse subspace clustering[C]//Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2013:430-437. [29] MA L,WANG C,XIAO B,et al. Sparse representation for face recognition based on discriminative low-rank dictionary learning[C]//Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2012:2586-2593. [30] RAO S R,TRON R,VIDAL R,et al. Motion segmentation via robust subspace separation in the presence of outlying,incomplete,or corrupted trajectories[C]//Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2008:1-8. [31] CHENG B,LIU G,WANG J,et al. Multi-task low-rank affinity pursuit for image segmentation[C]//Proceedings of the 2011 International Conference on Computer Vision. Piscataway:IEEE, 2011:2439-2446. [32] 管皓, 薛向阳, 安志勇. 深度学习在视频目标跟踪中的应用进展与展望[J]. 自动化学报,2016,42(6):834-847.((GUAN H, XUE X Y,AN Z Y. Advances on application of deep learning for video object tracking[J]. Acta Automatica Sinica,2016,42(6):834-847.)) [33] CHAIB S,LIU H,GU Y,et al. Deep feature fusion for VHR remote sensing scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing,2017,55(8):4775-4784. [34] CHÉRON G,LAPTEV I,SCHMID C. P-CNN:pose-based CNN features for action recognition[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway:IEEE, 2015:3218-3226. [35] GIRSHICK R,DONAHUE J,DARRELL T,et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2014:580-587. [36] REDMON J,FARHADI A. YOLO9000:better,faster,stronger[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:6517-6525. [37] YU S,JIA S,XU C. Convolutional neural networks for hyperspectral image classification[J]. Neurocomputing,2017,219:88-98. |