Journal of Computer Applications ›› 2020, Vol. 40 ›› Issue (4): 1030-1037.DOI: 10.11772/j.issn.1001-9081.2019081390

• Artificial intelligence • Previous Articles     Next Articles

Semi-supervised hyperspectral image classification based on focal loss

ZHANG Kailin1, YAN Qing1, XIA Yi1, ZHANG Jun1, DING Yun2   

  1. 1. School of Electrical Engineering and Automation, Anhui University, Hefei Anhui 230601, China;
    2. State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing(Wuhan University), Wuhan Hubei 430079, China
  • Received:2019-08-14 Revised:2019-10-17 Online:2020-04-10 Published:2019-12-09
  • Supported by:
    This work is partially supported by the National Natural Science Foundation of China(61602002).

基于焦点损失的半监督高光谱图像分类

张凯琳1, 阎庆1, 夏懿1, 章军1, 丁云2   

  1. 1. 安徽大学 电气工程与自动化学院, 合肥 230601;
    2. 测绘遥感信息工程国家重点实验室(武汉大学), 武汉 430079
  • 通讯作者: 阎庆
  • 作者简介:张凯琳(1993-),女,安徽淮北人,硕士研究生,主要研究方向:图像分类、深度学习;阎庆(1978-),女,安徽六安人,副教授,博士,主要研究方向:图像处理、稀疏子空间聚类;夏懿(1976-),男,安徽合肥人,副教授,博士,主要研究方向:图像处理;章军(1971-),男,安徽合肥人,教授,博士,主要研究方向:模式识别;丁云(1992-),男,山东泰安人,博士研究生,主要研究方向:图像处理。
  • 基金资助:
    国家自然科学基金资助项目(61602002)。

Abstract: Concerning the difficult acquisition of training data in HyperSpectral Image(HSI),a new semi-supervised classification framework for HSI was adopted,in which both limited labeled data and abundant unlabeled data were used to train deep neural networks. At the same time,the unbalanced distribution of hyperspectral samples leads to huge differences in the classification difficulty of different samples,and the original cross-entropy loss function is unable to describe this distribution feature,so the classification effect is not ideal. To address this problem,a multi-classification objective function based on focal loss was proposed in the semi-supervised classification framework. Finally,considering the influence of spatial information of HSI on classification,combined with Markov Random Field(MRF),the sample space features were used to further improve the classification effect. The proposed method was compared with various classical methods on two commonly used HSI datasets. Experimental results show that the proposed method can obtain classification results superior to other comparison methods.

Key words: HyperSpectral Image (HSI) classification, semi-supervised, focal loss, deep learning, Convolutional Neural Network (CNN)

摘要: 针对高光谱图像(HSI)训练数据获取困难的问题,采用了一种新的HSI半监督分类框架,该框架利用有限的标记数据和丰富的未标记数据来训练深度神经网络。同时,由于高光谱样本分布是不平衡的,导致不同样本分类难度存在巨大差异,采用原始交叉熵损失函数无法刻画这种分布特征,因而分类效果不理想。为了解决这个问题,在半监督分类框架中提出一种基于焦点损失的多分类目标函数。最后,考虑到HSI的空间信息对分类的影响,结合马尔可夫随机场(MRF),利用样本空间特征进一步改善分类效果。在两个常用的HSI数据集上,将所提方法与多种典型算法进行了实验对比分析,实验结果表明所提方法能够产生优于其他对比方法的分类效果。

关键词: 高光谱图像分类, 半监督, 焦点损失, 深度学习, 卷积神经网络

CLC Number: