[1] BERTINETTO L, VALMADRE J, HENRIQUES J F, et al. Fully-convolutional Siamese networks for object tracking[C]//Proceedings of the 14th European Conference on Computer Vision, LNCS 9914. Cham:Springer, 2016:850-865. [2] 杨康,宋慧慧,张开华. 基于双重注意力孪生网络的实时视觉跟踪[J]. 计算机应用, 2019, 39(6):1652-1656. (YANG K, SONG H H, ZHANG K H. Real-time visual tracking based on dual attention siamese network[J]. Journal of Computer Applications, 2019, 39(6):1652-1656.) [3] HELD D, THRUN S, SAVARESE S. Learning to track at 100 FPS with deep regression networks[C]//Proceedings of the 14th European Conference on Computer Vision, LNCS 9905. Cham:Springer, 2016:749-765. [4] 熊昌镇,车满强,王润玲. 基于稀疏卷积特征和相关滤波的实时视觉跟踪算法[J]. 计算机应用, 2018, 38(8):2175-2179, 2223. (XIONG C Z, CHE M Q, WANG R L. Real-time visual tracking algorithm based on correlation filters and sparse convolutional features[J]. Journal of Computer Applications, 2018, 38(8):2175-2179, 2223.) [5] GUO Q, FENG W, ZHOU C, et al. Learning dynamic Siamese network for visual object tracking[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE, 2017:1781-1798. [6] LI B, YAN J, WU W, et al. High performance visual tracking with Siamese region proposal network[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2018:8971-8980. [7] ZHU Z, WANG Q, LI B, et al. Distractor-aware Siamese networks for visual object tracking[C]//Proceedings of the 15th European Conference on Computer Vision, LNCS 11213. Cham:Springer, 2018:103-119. [8] WANG Q, ZHANG L, BERTINETTO L, et al. Fast online object tracking and segmentation:a unifying approach[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2019:1328-1338. [9] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Red Hook, NY:Curran Associates Inc., 2012:1097-1105. [10] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:770-778. [11] RUSSAKOVSKY O, DENG J, SU H, et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3):211-252. [12] KRISTAN M, LEONARDIS A, MATAS J, et al. The visual object tracking VOT2016 challenge results[C]//Proceedings of the 2016 IEEE International Conference on Computer Vision, LNCS 9914. Cham:Springer, 2016:777-823. [13] KRISTAN M, LEONARDIS A, MATAS J, et al. The sixth visual object tracking VOT2018 challenge results[C]//Proceedings of the 2018 European Conference on Computer Vision, LNCS 11129. Cham:Springer, 2018:3-53. [14] DANELLJAN M, ROBINSON A, KHAN FS, et al. Beyond correlation filters:learning continuous convolution operations for visual tracking[C]//Proceedings of the 2016 European Conference on Computer Vision, LNCS 9909. Cham:Springer, 2016:472-488. [15] DANELLJAN M, BHAT G, KHAN F S, et al. ECO:efficient convolution operators for tracking[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2017:6931-6939. [16] HE A, LUO C, TIAN X, et al. A twofold Siamese network for real-time object tracking[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2018:4834-4843. [17] XU T, FENG Z H, WU X, et al. Learning adaptive discriminative correlation filters via temporal consistency preserving spatial feature selection for robust visual object tracking[J]. IEEE Transactions on Image Processing, 2019, 28(11):5596-5609. |