[1] BOBADILLA J,ORTEGA F,HERMANDO A,et al. Recommender systems survey[J]. Knowledge-Based Systems, 2013, 46:109-132. [2] KARABADJI N E I,BELDJOUDI S,SERIDI H,et al. Improving memory-based user collaborative filtering with evolutionary multi-objective optimization[J]. Expert Systems with Applications,2018, 98:153-165. [3] SHU J,SHEN X,LIU H,et al. A content-based recommendation algorithm for learning resources[J]. Multimedia Systems,2018, 24(2):163-173. [4] 田保军, 杨浒昀, 房建东. 融合信任和基于概率矩阵分解的推荐算法[J]. 计算机应用, 2019, 39(10):2834-2840.(TIAN B J, YANG H Y,FANG J D. Recommendation algorithm based on probability matrix factorization and fusing trust[J]. Journal of Computer Applications,2019,39(10):2834-2840.) [5] FENG Y,ZHOU P,WU D,et al. Accurate content push for content-centric social networks:a big data support online learning approach[J]. IEEE Transactions on Emerging Topics in Computational Intelligence,2018,2(6):426-438. [6] JAYALAKSHMI N,PADMAIA P,SUMA G J. Webpage recommendation system using interesting subgraphs and Laplace based knearest neighbor[J]. International Journal of Pattern Recognition and Artificial Intelligence,2020,34(3):Article No. 2053003. [7] HWANA S Y,WEI C P,LEE C H,et al. Coauthorship networkbased literature recommendation with topic model[J]. Online Information Review,2017,41(3):318-336. [8] YUAN W,YANG Y,BAO X. Learning item/user vectors from comments for collaborative recommendation[C]//Proceedings of the 9th International Conference on Machine Learning and Computing. New York:ACM,2017:86-91. [9] HUO H,LIU X,ZHENG D,et al. Collaborative filtering fusing label features based on SDAE[C]//Proceedings of the 17th Industrial Conference on Data Mining,LNCS 10357. Cham:Springer,2017:223-236. [10] 黄立威, 江碧涛, 吕守业, 等. 基于深度学习的推荐系统研究综述[J]. 计算机学报, 2018, 41(7):1619-1647.(HUANG L W, JIANG B T,LYU S Y,et al. Survey on deep learning based recommender systems[J]. Chinese Journal of Computers,2018,41(7):1619-1647.) [11] KIM D,PARK C,OH J,et al. Convolutional matrix factorization for document context-aware recommendation[C]//Proceedings of the 10th ACM Conference on Recommender Systems. New York:ACM,2016:233-240. [12] LIU J,WANG Y,YAN F. An improved collaborative filtering recommendation algorithm[J]. Computer and Modernization,2017, 32(9):204-208. [13] 张敏, 丁弼原, 马为之, 等. 基于深度学习加强的混合推荐方法[J]. 清华大学学报(自然科学版), 2017, 57(10):1014-1021. (ZHANG M,DING B Y,MA W Z,et al. Hybrid recommendation approach enhanced by deep learning[J]. Journal of Tsinghua University(Science and Technology),2017,57(10):1014-1021.) [14] HYUN D,PARK C,YANG M C,et al. Review sentiment-guided scalable deep recommender system[C]//Proceedings of the 41st International ACM SIGIR Conference on Research and Development in Information Retrieval. New York:ACM,2018:965-968. [15] CHEN W,CAI F,CHEN H,et al. Joint neural collaborative filtering for recommender systems[J]. ACM Transactions on Information Systems,2019,37(4):Article No. 39. [16] ESKANDANIAN F,SONBOLI N,MOBASHER B. Power of the few:analyzing the impact of influential users in collaborative recommender systems[C]//Proceedings of the 27th ACM Conference on User Modeling,Adaptation and Personalization. New York:ACM,2019:225-233. [17] 程磊, 高茂庭. 结合时间加权和LDA聚类的混合推荐算法[J]. 计算机工程与应用, 2019, 55(11):160-166.(CHENG L,GAO M T. Hybrid recommendation algorithm based on time weighted and LDA clustering[J]. Computer Engineering and Applications, 2019,55(11):160-166.) [18] AL-SAFFAR A A M,TAO H,TALAB M A. Review of deep convolution neural network in image classification[C]//Proceedings of the 2017 International Conference on Radar,Antenna,Microwave,Electronics,and Telecommunications. Piscataway:IEEE, 2017:26-31. [19] WANG W,GANG J. Application of convolutional neural network in natural language processing[C]//Proceedings of the 2018 International Conference on Information Systems and Computer Aided Education. Piscataway:IEEE,2018:64-70. [20] CHUAN C H,AGRES K,HERREMANS D. From context to concept:exploring semantic relationships in music with word2vec[J]. Neural Computing and Applications, 2020, 32(6):1023-1036. |